03-03-2013   -   Physics

Thu 28 Feb 2013 Physicists demonstrate acceleration of electrons by laser in vacuum. Accelerating a free electron with a laser has been a longtime goal of solid-state physicists. Researcher at UCLA, have conducted research at BNL and have established that an electron beam can be accelerated by a laser in free space. This has never been done before at high energies and represents a significant breakthrough. It also may have implications for fusion as a new energy source. In free space, a plane-wave laser is unable to accelerate an electron. However, a chinese research group have proposed a concept of what physicists refer to as the capture–acceleration scenario to show that an electron can be accelerated by a tightly focused laser in a vacuum. more

  21-02-2013   -   Energy

Wed 20 Feb 2013 Engineers are catching rainbows: Material that slows light opens new possibilities in solar energy and other fields. This advancement in photonics could lead to technological breakthroughs in solar energy, stealth technology and other areas of research. A newly developed “hyperbolic metamaterial waveguide,” which is essentially an advanced microchip made of alternate ultra-thin films of metal and semiconductors and/or insulators. The waveguide halts and ultimately absorbs each frequency of light, at slightly different places in a vertical direction (see the above figure), to catch a “rainbow” of wavelengths. more

  12-02-2013   -   Biology

Wed 13 Feb 2013 Milestone of cancer research. A new research uncovered a critical, so far unknown immune mechanism that allows to permanently paralyse growing cancer cells, ie, arresting cancers rather than killing them. Scientists have found that anti-cancer immunity is capable of driving cancers and single cancer cells into a permanent growth arrest - called senescence. As complete cancer eradication is normally not feasible, deadly metastases normally result from surviving and regrowing cancer cells. The new data now explain, how immunity and immunotherapies can efficiently control surviving cancer cells and thus protect from cancer and metastases. more

  12-02-2013   -   Physics

Tue 12 Feb 2013 New order in quantum electronic material. Two physics professors have proposed an explanation for a new type of order, or symmetry, in an exotic material made with uranium -- a theory that may one day lead to enhanced computer displays and data storage systems and more powerful superconducting magnets for medical imaging and levitating high-speed trains. Scientists have seen this behavior for 25 years, but it has eluded explanation. When cooled to 17.5 degrees above absolute zero or lower (a bone-chilling minus 428 degrees Fahrenheit), the flow of electricity through this material changes subtly. The material essentially acts like an electronic version of polarized sunglasses, he explains. Electrons behave like tiny magnets, and normally these magnets can point in any direction. But when they flow through this cooled material, they come out with their magnetic fields aligned with the material's main crystal axis. more

  30-01-2013   -   Nuclear

Tue 29 Jan 2013 High plutonium breeding of light water cooled reactors. A Japanese research team have succeeded in developing the world's first conceptual nuclear reactor design of high plutonium breeding by light water cooling. The new fuel assembly where fuel rods are closely packed for reducing reactor coolant to fuel volume fraction for high breeding. This computational analysis will open the way of commercialization of fast reactor and nuclear fuel cycle for peaceful use of nuclear energy based on the mature light water cooling technologies.more

  14-01-2013   -   Physics

Mon 14 Jan 2013 New material harvests energy from water vapour. MIT engineers have created a new polymer film that can generate electricity by drawing on a ubiquitous source: water vapor. The power generated could drive robotic limbs or generate enough electricity to power micro- and nanoelectronic devices, such as environmental sensors. The new film is made from an interlocking network of two different polymers. One of the polymers, polypyrrole, forms a hard but flexible matrix that provides structural support. The other polymer, polyol-borate, is a soft gel that swells when it absorbs water. The film harvests energy found in the water gradient between dry and water-rich environments. When the 20-micrometer-thick film lies on a surface that contains even a small amount of moisture, the bottom layer absorbs evaporated water, forcing the film to curl away from the surface. more

  27-12-2012   -   Chemistry

Wed 26 Dec 2012 pH measurements: How to see the real face of electrochemistry and corrosion. For several decades antimony electrodes have been used to measure the acidity/basicity – and so to determine the pH value. Unfortunately, they allow for measuring pH changes of solutions only at a certain distance from electrodes or corroding metals. New research has developed a method for producing antimony micro-electrodes that allow for measuring pH changes just over the metal surface, at which chemical reactions take place. The new microelectrode is made of a glass capillary filled with liquid antimony. Stretched to reduce the cross section and cut flat, the microelectrode enables carrying out measurements at hard surfaces, in a liquid environment. It is thus suitable for monitoring electrochemical reactions and corrosion processes resulting from interaction between metal and solution or a thin water film.more

  16-12-2012   -   Biology

Sun 16 Dec 2012 New stem cell research, transplant strategies show promise to improve outcomes, reduce complications. New studies illustrate how the use of advanced modeling techniques is optimizing stem cells to treat patients with blood disorders, as well as the potential of enhanced treatment strategies to improve the success rate of hematopoietic stem cell (HSC) transplantation for these patients. more

  16-12-2012   -   Physics

Thu 13 Dec 2012 2012 Physics on a plane: A group of physicists from Japan have taken to the skies to grow crystals under zero gravity. This is necessary to overcome the limitations of the laboratory in order to examine the peculiar dynamics of helium crystals on a much larger scale than can be achieved with ordinary materials. Their results could help researchers reveal the fundamental physics behind the development of crystals, whilst also unveiling phenomena that are usually hidden by gravity. The helium crystals were grown using high pressures, extremely low temperatures (0.6K/-272°C) and by splashing them with a superfluid – a state of quantum matter which behaves like a fluid but has zero viscosity, meaning it has complete resistance to stress. Superfluids can also flow through extremely tiny gaps without any friction. more

  22-11-2012   -   Energy

Wed 21 Nov 2012 New Research reveals Nanotechnology simplifies hydrogen production for clean energy. In the first-ever experiment of its kind, researchers have demonstrated that clean energy hydrogen can be produced from water splitting by using very small metal particles that are exposed to sunlight. Published results implies that the use of gold particles smaller than one nano-meter resulted in greater hydrogen production than other co-catalysts tested. more

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40