
 
 

Characterization of Concrete Materials Using 

Non-Destructive Wave-Propagation Testing 

Techniques 

 

 

Saber Taghavipour 

M.Sc. Structural Engineering  

 

A thesis submitted in fulfillment of the  

requirements for the degree of 

Doctor of Philosophy 

 

 

 

 
 
 
 
 

Centre for Infrastructure Engineering 
 

School of Computing, Engineering and Mathematics 
 

Western Sydney University, Australia 
 
 

2017 



 
 

Acknowledgments 

This thesis would not have been possible without the guidance and the help of 

individuals who in one way or another contributed and extended their valuable 

assistance in the preparation and completion of my study. I would like to express my 

sincere gratitude to my advisor, Associate Professor Sergiy Kharkivskiy, who 

unfortunately passed away a few weeks before the final thesis submission. This 

thesis would not have been possible without his advice and guidance. May his soul 

rest in peace.  I would also grateful to Professor Bijan Samali, Dr. Won Hee Kang 

and Dr. Olivia Mirza for their support and advices. The present thesis would not have 

been possible without their technical insight. 

I would like to thank all the academic, administrative and technical staff in 

the Centre for Infrastructure Engineering at Western Sydney University. Special 

thanks go to the technical staff, Dr. Mithra Fernando, Mr David Batten, Mr Robert 

Marshall, Mr Murray Bolden, Mr Ali Gharizadeh, Mr Ranjith Ratnayake and, Mr 

Nathan McKinlay, for their assistance and technical support in the experimental 

programme and software support. 

I would like to extend my gratitude to my friends and colleagues, who have 

offered fruitful suggestions and support during this work: Dr. Ali Jamshidi, Dr. Amir 

Azad, Dr. Rui Li, Dr. Mahdi Moosazadeh, Mr Mohsen Mousavi and Mr Naser 

Mehrafshan for their encouragement and friendship. 

I finally would like to show my deepest gratefulness to my family, my father 

Ali, my mother Jila, my brother Saied and my sister Farnaz. They witnessed my 

happiness and my struggle through the years. It was them who have always shown 



 
 

their confidence on me. I thank them for bearing my absence for the many years 

while I was pursuing my PhD. I would like to dedicate this thesis to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Statement of Authentication 

The work presented in this thesis is, to the best of my knowledge and belief, original 

except as acknowledged in the text. I hereby declare that I have not submitted this 

material, either in full or in part, for a degree at this or any other institution. 

Saber Taghavipour 
…………………………………………… 

 
30 October 2017 

…………………………………………… 
 

 

 

 

 

 

 

 

 

 



  

 
 i   

 

Table of contacts 

 

Table of contacts ........................................................................................................... i 

List of figures ............................................................................................................... v 

List of tables ............................................................................................................... xii 

List of abbreviations .................................................................................................. xiii 

Abstract ...................................................................................................................... xv 

Chapter 1 : Introduction ........................................................................................... 1 

1.1 Overview ............................................................................................................ 1 

1.2 Research Objectives ........................................................................................... 2 

1.3 Publications ........................................................................................................ 3 

1.4 Thesis Outlines ................................................................................................... 4 

Chapter 2 : Literature Review .................................................................................. 7 

2.1 Introduction ........................................................................................................ 7 

2.2 Concrete materials and structures ....................................................................... 7 

2.2.1 Characterisation of concrete structures (property, damages, etc.) ....... 12 

2.2.2 Concrete structure crack classifications ............................................... 18 

2.2.3 Sensory techniques for concrete assessment ........................................ 26 

2.3 Concrete structure health monitoring using piezoceramic transducers ............ 31 

2.3.1 Detection and monitoring of cracks in concrete structures .................. 38 

2.4 Smart aggregates material, setup, and arrangement ......................................... 43 



  

 
 ii   

 

2.5 Summary .......................................................................................................... 49 

Chapter 3 : Smart Aggregate Based Nondestructive Testing Systems ............... 51 

3.1 Introduction ...................................................................................................... 51 

3.2 Measurement and data processing .................................................................... 51 

3.2.1 Data analysis approach ......................................................................... 55 

3.2.2 Measurement error analysis ................................................................. 57 

3.3 Specimens and arrangement of SAs ................................................................. 60 

3.3.1 Embedded SA transducers ................................................................... 61 

3.3.2 Embedded and mounted SAs ............................................................... 65 

3.3.3 Mounted SAs ........................................................................................ 68 

3.4 Boundary condition effect on wave propagation in specimen ......................... 71 

3.5 Summary .......................................................................................................... 73 

Chapter 4 : Early-Age Concrete Hydration Characterization Using Embedded 

Smart Aggregates ..................................................................................................... 76 

4.1 Introduction ...................................................................................................... 76 

4.2 Concrete mixture and relevant general tests ..................................................... 77 

4.2.1 Concrete mix design ............................................................................. 77 

4.2.2  Slump test ............................................................................................ 79 

4.2.3 Determination of compressive strength ............................................... 81 

4.3 SA arrangement, testing with water and concrete specimens preparation ....... 83 

4.3.1 SA arrangement and testing with water ............................................... 83 



  

 
 iii   

 

4.3.2 Concrete specimens preparation .......................................................... 86 

4.4 Results and discussions .................................................................................... 88 

4.4.1 Hydration process monitoring .............................................................. 88 

4.4.2 Effect of change of distances between transducers on early-age 

concrete hydration monitoring .......................................................................... 102 

4.5 Summary ........................................................................................................ 104 

Chapter 5 : Detection and Monitoring of Crack in Concrete Beams under 

Bending Using Mounted Smart Aggregates ........................................................ 106 

5.1 Introduction .................................................................................................... 106 

5.2 Concrete beam preparation and loading setup ............................................... 107 

5.3 Sensor arrangement and setup ........................................................................ 112 

5.4 Results and discussions .................................................................................. 114 

5.5 Summary ........................................................................................................ 139 

Chapter 6 : Detection and Monitoring of Crack on RC Beams under 4-point 

Bending Load Using Mounted Smart Aggregates............................................... 141 

6.1 Introduction .................................................................................................... 141 

6.2 Reinforced concrete beams and loading setup ............................................... 141 

6.3 Sensor arrangement and setup ........................................................................ 146 

6.4 Results and discussions .................................................................................. 149 

6.4.1  Signal processing data analysis .......................................................... 149 

6.4.2  Verification of signal processing data ................................................ 177 

6.5 Summary ........................................................................................................ 187 



  

 
 iv   

 

Chapter 7 : Detection and Monitoring of Crack on RC Composite Slab under 

Cyclic Load Using Mounted Smart Aggregates .................................................. 189 

7.1 Introduction .................................................................................................... 189 

7.2 Specimen preparation and loading setup ........................................................ 190 

7.3 Sensor arrangement and measurement setup .................................................. 195 

7.4 Results and discussion .................................................................................... 197 

7.4.1  Signal processing data analysis .......................................................... 198 

7.4.1  Verification of signal processing data ................................................ 205 

7.5 Summary ........................................................................................................ 208 

Chapter 8 : Conclusion and Future Work ........................................................... 210 

8.1 Conclusion ...................................................................................................... 210 

8.2 Future work .................................................................................................... 212 

References ............................................................................................................... 214 

Appendix A ............................................................................................................. 223 

Appendix B ............................................................................................................. 226 

 

 

 

 

 



  

 
 v   

 

List of figures 

 

Figure 2-1: Crack classification chart a) before and b) after concrete hardening            

(Gilbert and Ranzi, 2010) ........................................................................................... 21 

Figure 2-2: Structural cracks in a reinforced concrete beam and tension members         

(Gilbert and Ranzi, 2010). .......................................................................................... 24 

Figure 2-3: Flexural cracks at overload in a RC beam with ductile reinforcement          

(Gilbert and Ranzi, 2010) ........................................................................................... 25 

Figure 2-4: Piezoelectric coupling coefficients (Gu, 2007) ....................................... 33 

Figure 2-5: Schematic of stress wave propagate through cracks a) stress wave 

propagating parallel to the crack and b) stress wave propagating perpendicular         

to the crack (Feng et al., 2015) ................................................................................... 43 

Figure 2-6: A Smart Aggregate with a connector and its structure                          

(Feng et al., 2015) ...................................................................................................... 44 

Figure 2-7: Sensor arrangement for a) three-points bending test, one emitter 

(actuator) and one receiver and b) pull-out test, two receivers and one emitter 

(Dumoulin et al., 2014) .............................................................................................. 46 

Figure 2-8: Notch added to bottom of beam to ensure the crack initiation started  

from the notch (Dumoulin et al., 2015) ..................................................................... 47 

Figure 2-9: Schematic of embedded Smart Aggregate and mounted piezoceramic 

patches for a) RC beam and b) concrete-encased composite structure (Zhao et al., 

2016, Liang et al., 2016) ............................................................................................ 48 

Figure 3-1: Fabricated SA with cable and BNC connector........................................ 52 

Figure 3-2: SA-based measurement system ............................................................... 53 



  

 
 vi   

 

Figure 3-3: A view of multi-channel program on LabVIEW software ...................... 54 

Figure 3-4: View of LabVIEW software with a run on TDMS file ........................... 55 

Figure 3-5: Frequency-domain received signal ......................................................... 56 

Figure 3-6: Schematic of the embedded SAs setup and its received signal in time-

domain for a) material characterisation and b) detection and evaluation of defect ... 62 

Figure 3-7: Picture showing calibration of SAs using the proposed SA-loaded 

approach ..................................................................................................................... 63 

Figure 3-8: Schematic position of specimens and embedded SAs ............................ 64 

Figure 3-9: Specimen of (a) schematic with a gird and measurement points and      

(b) picture of the specimen tested by an external SA with a load. ............................. 66 

Figure 3-10: Variation of peak of PSD for different points on surface of specimen . 67 

Figure 3-11: Concrete specimens with mounted SAs. ............................................... 69 

Figure 3-12: Concrete specimen with crack and SAs ................................................ 70 

Figure 3-13: Schematic of SAs location on surface of concrete specimen ................ 70 

Figure 3-14: Specimen with (a) polywood sheet and (b) metal plate. ....................... 72 

Figure 4-1: Slump test (a) equipment and (b) measurement approach used in this 

investigation. .............................................................................................................. 81 

Figure 4-2: Cylindrical specimens made for 7- and 28-day compressive strength   

test. ............................................................................................................................. 82 

Figure 4-3: Compressive strength hydraulic machine testing cylindrical concrete 

specimen: (a) before and (b) after test........................................................................ 83 

Figure 4-4: SAs position inside the mould with different level of water. .................. 84 

Figure 4-5: Results of SAs with different level of water for (a) time-domain and     

(b) frequency-domain. ................................................................................................ 85 

Figure 4-6: Concrete moulds with SAs: (a) before and (b) after casting. .................. 87 



  

 
 vii   

 

Figure 4-7: Received time-domain signals from the embedded sensor every 5 hours 

after casting for SC2 specimen with 50 mm distance. ............................................... 90 

Figure 4-8: Power Spectral Density (PSD) of from the embedded sensor every 5 

hours after casting for SC2 specimen with 50 mm distance. ..................................... 92 

Figure 4-9: Resonant frequencies of all specimens versus hours for (a) 50 mm,                     

(b) 100 mm and (c) 150 mm distance. ....................................................................... 94 

Figure 4-10: Peak of PSDs of received signal at the distances of a) 50 mm                             

b) 100 mm and c) 150 mm  during first 20 hours. ..................................................... 95 

Figure 4-11: Peak of PSDs of received signal versus times at the distances of           

a) 50 mm b) 100 mm and c) 150 mm  during first 8 days.......................................... 96 

Figure 4-12: Total power received of received signal at the distances of                    

a) 50 mm b) 100 mm and c) 150 mm during first 20 hours. ...................................... 99 

Figure 4-13: Total power received of received signal at the distances of                    

a) 50 mm b) 100 mm and c) 150 mm  during first 8 days........................................ 100 

Figure 4-14: Peak of PSDs of received signal versus times for a) 0.45 b) 0.50 and                  

c) 0.55 w/c ratio in first 20 hours. ............................................................................ 103 

Figure 5-1: a) Slump test before casting and b) concrete cylinders after casting .... 108 

Figure 5-2: Concrete beam casting and preparation ................................................ 109 

Figure 5-3: Instron universal test machine. .............................................................. 110 

Figure 5-4: Software setup for Instron machine ...................................................... 111 

Figure 5-5: Locations of a through crack, an actuator, and sensors at the specimen 

under a 3-point bending test ..................................................................................... 112 

Figure 5-6: Schematic of SA transducers mounted on the concrete beam under       

test ............................................................................................................................ 113 

Figure 5-7: Strain gauge location at the bottom of a concrete beam ....................... 114 



  

 
 viii   

 

Figure 5-8: Cylindrical concrete specimen: (a) before and (b) after the test ........... 115 

Figure 5-9: Average compressive strengths of the concrete cylinder specimens 

recorded 7, 14, 28, 56 and 92 days after casting ...................................................... 116 

Figure 5-10: Time-domain signals received by the tension sensor (ST) every 5 

minutes after loading commenced ........................................................................... 118 

Figure 5-11: Power spectral density (PSD) for the tension sensor (ST) every 5 

minutes after loading commenced ........................................................................... 121 

Figure 5-12: Peak of PSD for (a) ST sensor at the tension side and                            

(b) SC sensor at the compression side of concrete beam SB22 ................................ 123 

Figure 5-13: Total received power for (a) ST sensor at the tension side and              

(b) SC sensor at the compression side of concrete beam SB22 ................................ 124 

Figure 5-14: Peak of PSD for (a) ST sensor at the tension side and                            

(b) SC sensor at the compression side of concrete beam SB16 ................................ 125 

Figure 5-15: Total received power for (a) ST sensor at the tension side and              

(b) SC sensor at the compression side of concrete beam SB16 ................................ 126 

Figure 5-16: Peak of PSD for (a) ST sensor at the tension side and                            

(b) SC sensor at the compression side of concrete beam SB03 ................................ 127 

Figure 5-17: Total received power for (a) ST sensor at the tension side and              

(b) SC sensor at the compression side of concrete beam SB03 ................................ 128 

Figure 5-18: a) Peak of PSD results obtained from ten concrete beams after 

normalization   and b) their standard deviation ........................................................ 130 

Figure 5-19: a) Total received power results obtained from 10 concrete beams     

after normalisation and b) their standard deviation ................................................. 131 

Figure 5-20: Results for (a) loading history recorded by a load cell and                    

(b) a strain gauge result at mid-span of concrete beam SB22 .................................. 133 



  

 
 ix   

 

Figure 5-21: Results for (a) loading history recorded by a load cell and                    

(b) a strain gauge result at mid-span of concrete beam SB16 .................................. 134 

Figure 5-22: Results for (a) loading history recorded by a load cell and                    

(b) a strain gauge result at mid-span of concrete beam SB03 .................................. 135 

Figure 5-23: The damage index values for concrete beam a) SB22, b) SB16 and       

c) SB03 ..................................................................................................................... 139 

Figure 6-1: Schematic of rebar arrangement cross-sectional view .......................... 143 

Figure 6-2: RC beams specimens (a) before and (b) after casting ........................... 144 

Figure 6-3: 4-Point test frame used in this study ..................................................... 145 

Figure 6-4: Rubber sheets used to prevent vibration ............................................... 146 

Figure 6-5: Schematic of SA transducers on the specimen under test ..................... 147 

Figure 6-6: Strain gauges and LVDT location at the bottom of specimen .............. 148 

Figure 6-7: Power spectral density (PSD) for the sensor (ST), measured every 5 

minutes, after loading commenced, for the duration of 60 minutes......................... 153 

Figure 6-8: Power spectral density (PSD) for the sensor (SC) measured every 5 

minutes, after commencing loading, for the duration of 60 minutes ....................... 158 

Figure 6-9: Different stage of loading which caused a) tension cracks and                 

b) tension and compression cracks ........................................................................... 160 

Figure 6-10: Peak of PSD vs time for (a) ST sensor at the tension side and               

(b) SC sensor at the compression side of RC beam LB01 ........................................ 161 

Figure 6-11: Total received power vs time for (a) ST sensor at the tension side and   

(b) SC sensor at the compression side of RC beam LB01 ........................................ 162 

Figure 6-12: Peak of PSD vs time for (a) ST sensor at the tension side and               

(b) SC sensor at the compression side of RC beam LB02 ........................................ 163 



  

 
 x   

 

Figure 6-13: Total received power vs time for (a) ST sensor at the tension side and   

(b) SC sensor at the compression side of RC beam LB02 ........................................ 164 

Figure 6-14: Peak of PSD vs time for (a) ST sensor at the tension side and               

(b) SC sensor at the compression side of RC beam LB03 ........................................ 165 

Figure 6-15: Total received power vs time for (a) ST sensor at the tension side and  

(b) SC sensor at the compression side of RC beam LB03 ........................................ 166 

Figure 6-16: Peak of PSD vs time for (a) ST sensor at the tension side and               

(b) SC sensor at the compression side of RC beam LB04 ........................................ 167 

Figure 6-17: Total received power vs time for (a) ST sensor at the tension side and  

(b) SC sensor at the compression side of RC beam LB04 ........................................ 168 

Figure 6-18: Peak of PSD results obtained from four RC beams after                         

a) normalisation and b) standard deviation .............................................................. 171 

Figure 6-19: Total received power results obtained from four RC beams after           

a) normalisation and b) standard deviation .............................................................. 172 

Figure 6-20: Damage index value for RC beam specimens a) LB01, b) LB02,           

c) LB03 and d) LB04 ............................................................................................... 176 

Figure 6-21: The loading history recorded by load cell for specimens a) LB01,         

b) LB02, c) LB03 and d) LB04 ................................................................................ 180 

Figure 6-22: Results of LVTD installed at the bottom of specimens a) LB01,            

b) LB02, c) LB03 and d) LB04 ................................................................................ 183 

Figure 6-23: Results of five strain gauges attached at the bottom of RC beam 

specimens a) LB01, b) LB02, c) LB03 and d) LB04 ............................................... 185 

Figure 6-24: The location of cracks and bonded strain gauges in bottom of RC    

beam ......................................................................................................................... 187 

Figure 7-1: Configuration of the specimen (units: mm) (Li et al., 2017) ................ 192 



  

 
 xi   

 

Figure 7-2: Details of the steel tube (units: mm) (Li et al., 2017) ........................... 193 

Figure 7-3: Schematic of test setup (units: mm) ...................................................... 194 

Figure 7-4: Cyclic loading protocol ......................................................................... 195 

Figure 7-5: Schematic of the specimen, measurement setup, and its output signal      

in time-domain ......................................................................................................... 197 

Figure 7-6: Top view of RC slab with SAs and demountable mechanical strain  

gauge ........................................................................................................................ 197 

Figure 7-7: Power spectral density (PSD) for sensor 1 measured every 30 minutes 

after loading commenced ......................................................................................... 200 

Figure 7-8: Cracking area when the RC slab is under (a) tension and (b)    

compression ............................................................................................................. 202 

Figure 7-9: Peak of PSD vs time for (a) sensor 1 and (b) sensor 2 .......................... 203 

Figure 7-10: Total received power vs time for (a) sensor 1 and (b) sensor 2 .......... 204 

Figure 7-11: Setup of instrumentation LVDTs, LPs and inclinometers (units: mm)               

(Li et al., 2017). ........................................................................................................ 206 

Figure 7-12: M-θ Hysteretic curves of specimen (Li et al., 2017) ........................... 206 

Figure 7-13: Displacement monitoring results using demountable mechanical strain 

gauge ........................................................................................................................ 208 

 

 

 

 

 



  

 
 xii   

 

List of tables 

Table 2-1: The elastic modulus for in-situ concrete, 15 ............................................ ܿܧ 

Table 2-2: Increase in elastic modulus with age of concrete ݐ −  16 ......... (28)ܿܧ/ݐ ܿܧ

Table 3-1: Results of calibration of SAs using the constant load .............................. 63 

Table 3-2: Measurement results of specimens with gap ............................................ 65 

Table 3-3: Results of specimens with external SA .................................................... 67 

Table 3-4: Results of specimens with gap.................................................................. 69 

Table 3-5: Results of specimens with and without crack ........................................... 71 

Table 3-6: Results for specimens with 50-mm distance between SAs ...................... 72 

Table 3-7: Results of specimens with 100-mm distance between SAs ...................... 73 

Table 3-8: Results of specimens with 150-mm distance between SAs ...................... 73 

Table 4-1: Material Properties used in concrete mixture ........................................... 78 

Table 4-2: Concrete mixing design for 1m3 ............................................................... 79 

Table 4-3: Characterisation of SAs inside the water at 50 mm distance ................... 85 

Table 4-4: Characterisation of SAs inside the water at 100 mm distances ................ 86 

Table 4-5: Characterisation of SAs inside the water at 150 mm distances ................ 86 

Table 4-6: The results of slump test ........................................................................... 88 

Table 4-7: Compressive strength test results ........................................................... 102 

Table 5-1: Properties of materials used in concrete mixture.................................... 107 

Table 5-2: Material compressive strength test results .............................................. 115 

Table 5-3: Damage index values vs. time for concrete beam SB22, SB16,              

and SB03 .................................................................................................................. 137 

Table 6-1: Longitudinal Rebar Arrangement ........................................................... 143 

Table 6-2: Damage index values calculated at different time of loading ................ 174 



  

 
 xiii   

 

List of abbreviations 

AC    Actuator 

ADS   Active Sensing Diagnostic 

AE   Acoustic Emission 

AFC   Active Fibre Composite 

APA   Amplified Piezoelectric Actuators 

BNC   Bayonet Neill-Concelman 

CFST   Concrete-Filled Steel Tubular 

CJP   Complete Joint Penetration 

DAQ   Data Acquisition 

DSP   Digital Signal Processing 

EMI   Electromechanical Impedance 

HDT   Horizontal Differential Transducers 

LP   Liner Potentiometer 

LVTD   Linear Variable Differential Transformer 

MLA   Multi-Layer Piezoelectric Actuators 

NDE   Non-Destructive Evaluation 



  

 
 xiv   

 

NDT   Non-Destructive Testing 

PC   Personal Computer 

PSD   Power Spectrum Density 

PZT   Lead Zirconate Titanate 

RBS   Reduced Beam Section 

RC   Reinforced Concrete 

RMSD   Root-Mean-Square Deviation 

SA   Smart Aggregate 

SD   Standard Deviation 

SE   Sensor 

TDMS   Technical Data Management Streaming 

UPV   Ultrasonic Pulse Velocity 

UT   Ultrasonic Testing 

VDT   Vertical Differential Transducers 

 

 

 



  

 
 xv   

 

Abstract 

Non-destructive testing (NDT) of concrete members has been widely used for 

characterisation of material and assessment of functional structures without 

impairing their functions and performances. This thesis focuses on addressing critical 

challenges related to the practical implementation of NDT techniques based on 

wave-propagation approaches for characterisation of concrete members used in civil 

infrastructures. Specially, this research aims to achieve three interdependent 

objectives related to developing NDT techniques with piezoceramic-based 

transducers: monitoring of very early-age concrete hydration process, detection, and 

monitoring of cracking in concrete members of different complexity under loading. 

The concept of piezoceramic-based Smart Aggregate (SA) transducers is central to 

this research. Embedded SA transducers with an active sensing method have shown 

great potential for characterisation of construction materials such as concrete and 

concrete-steel composites. Based on the developed SA based approaches, an active-

sensing approach with appropriate arrangement of SAs in and on concrete members, 

and analysis of the received signal using the power spectral density, total received 

power and damage indexes is developed and applied in this thesis. To confirm its 

applicability for characterisation of very early-age concrete, a systematic 

investigation is performed into concrete specimens with different values of water-to-

cement ratio due to slightly different initial water amounts, and different separation 

distances between the embedded SAs. For the detection and monitoring of cracking 

in concrete members under loading the mounted SA based approach is proposed and 

applied. It is shown that NDT systems, based on this approach, provide detection and 

monitoring of cracking in a variety of concrete members under loading, including 



  

 
 xvi   

 

relatively simple concrete beams and reinforced concrete beams under bending, and 

reinforced concrete slab as a part of a complex composite member under cyclic 

loading. Comparisons are provided between the proposed system and conventional 

load cell and strain gauge systems with each tested member. 
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Chapter 1 : Introduction 

 

1.1 Overview 

Defects and damage can be present or introduced inside materials or functional 

structures during fabrication and/or service due to various effects including loading 

and environmental exposure. Non-destructive testing (NDT) methods have been 

widely used to detect, evaluate and monitor these defects and damages without 

impairing function and performance of the materials and structures.  

During hydration process in concrete, in the presence of water, various 

compounds in cement particles would hydrate to form new compounds which build 

up the infrastructure of hardened cement paste in concrete. The hardening process of 

concrete or other cement-based materials is considered to be the most critical time 

period during the life of a structure. It is important to have reliable information about 

the early age properties of the materials. In addition to cracks, many factors, such as 

earthquakes, climatic, chemical, or accidental, will cause damage of hardened 

concrete. It is imperative to quickly assess the severity of the damage and health 

status of a structure, especially for an infrastructure, in real time or near-real time 

after such an event to provide vital information for decision-makers. It is desirable to 

have a reliable NDT system to perform damage and defect detection, and health 

monitoring of materials and structures. 

With the rapid development of modern data processing methods and 

improvement on signal analysis technique, piezoelectric-based transducers had 
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become a weak link of the NDT technique chain. Most of the transducer utilised is 

designed as outside-mounted components attached on the surface of concrete 

materials. The compatibility between the piezoelectric sensor and concrete material 

turn out to be a critical issue in NDT technique. A good compatibility on acoustic 

properties and mechanical properties can ensure the accurate and reliable monitoring 

results. Li et al (2002) developed a brand new embedded Smart Aggregate (SA) 

piezoelectric composite that owns an acoustic impedance value quite close to that of 

the concrete matrix, which ensures a minimum signal distortion and maximum signal 

energy transmission efficiency. Based on SA piezoelectric composite, assorted new 

monitoring systems need to be designed and developed to match the characteristic of 

introduced composite. New systems shall be geared to the needs of practical testing 

instead of merely laboratory usage. Apart from monitoring system design, various 

suitable evaluation methods may be continually proposed to comprehensively study 

the fracture process and the hydration process of early-age and hardened concrete. 

1.2 Research Objectives 

The main aim of this research is to address critical challenges related to the practical 

implementation of NDT techniques based on a SA active sensing approach for 

characterization of concrete members used in civil infrastructures. The objectives of 

this research are as follows: 

1. To develop NDT techniques with piezoceramic-based SA transducers for 

characterisation of concrete members at different stages of their life. It should 

use stress wave propagation characteristics, appropriate arrangement of SAs 

in and on concrete members, and analysis of the received signal using the 

power spectral density, total received power and damage indexes.  
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2. To perform a systematic investigation into early-age and hardened concrete 

specimens with different values of water-to-cement ratio due to slightly 

different initial water amounts, and different separation distances between the 

embedded SAs. 

3.  To develop and apply a mounted SA based approach for detection and 

monitoring of cracking in concrete members under loading using propagation 

characteristics of stress waves in the members. 

4. To perform an experimental investigation into concrete and reinforced 

concrete beams under bending for detection and monitoring of cracks in these 

beams using the proposed system with mounted SA based approach and 

conventional load cell and strain gauge measurement systems.  

5. To monitor the development of cracking in a concrete-steel composite 

structure with connectors and reinforced concrete slab under cyclic loading 

using the proposed system with mounted SA based approach and 

conventional load cell and strain gauge measurement systems.  

1.3 Publications 

1. TAGHAVIPOUR, S., CHUNG, K., KHARKOVSKY, S., KONG, Q. & SONG, G. 

“Characterization of cement concrete specimens during hydration process with 

piezoelectric-based smart aggregates”. Proceedings of the 11th European Conference 

on Non-Destructive Testing (ECNDT 2014), 6 pages, October 6-10, 2014, Prague, 

Czech Republic, 2014. 

2. TAGHAVIPOUR, S., KHARKOVSKY, S., KANG, W-H., SAMALI, B. & 

MIRZA, O. 2017 “Detection and monitoring of flexural cracks in reinforced concrete 
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beams using mounted Smart Aggregate transducers,” Smart Materials and 

Structures, 26, 104009. 

3. NOORI HOSHYAR, A., KHARKOVSKY, S., TAGHAVIPOUR, S. & SAMALI, 

B. “Structural damage detection of concrete based on the autoregressive all-pole 

model parameters and artificial intelligence techniques”. The 5th International 

Conference on Civil and Environmental Engineering (I2C2E), Auckland, New 

Zealand. 

4. TAGHAVIPOUR, S., KHARKOVSKY, S., KANG, W-H., SAMALI, B. & 

MIRZA, O. “Detection and monitoring of crack in concrete beams under bending 

using mounted smart aggregates,” Smart Materials and Structures (under review). 

5. TAGHAVIPOUR, S., KHARKOVSKY, S., KANG, W-H., SAMALI, B., LI, R. & 

MIRZA, O. “Detection and monitoring of crack on RC composite slab under cyclic 

load using mounted smart aggregates,” Smart Materials and Structures (under 

review). 

1.4 Thesis Outlines 

The other chapters are as follows: 

Chapter 2 provides literature review of state-of-the-art in characterization of concrete 

materials and members at different stages of their life. It also emphasizes challenges 

which are still existed in this area. Background of sensory techniques with 

piezoelectric-based SA transducers is also provided. 

Chapter 3 presents developing NDT techniques with piezoceramic-based transducers. 

Based on the developed SA based approaches, an active-sensing approach with 
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appropriate arrangement of SAs in and on concrete members, and analysis of the 

received signal using the power spectral density, total received power and damage 

indexes is developed in this chapter. Three arrangements of SA are applied for 

detection of cracks in concrete specimens and mapping of stress wave field 

distribution in the surface of concrete. 

Chapter 4 presents an early-age concrete characterization using embedded SAs.  

Concrete specimens are tested with different values of w/c ratio and separation 

distances during first 8 days. The emphasis is made on the received signal in very 

early aged concrete using its power spectral density (PSD) and total received power.  

Chapter 5 presents the detection and monitoring of crack on concrete beams under 

bending load using the proposed mounted SA based approach. Concrete beam 

preparation, loading setup and sensor arrangement used in this experimental study is 

described. The received signal characteristics are monitoring during loading and the 

detection of cracks is performed using PSD, total received power and damage index 

as well as loading history and the results of measurement by strain gauges. 

Chapter 6 presents detection and monitoring of crack in large-scale reinforced 

concrete (RC) beams under bending load using the proposed mounted SA based 

approach, load cell and strain gauges. In this case these measurements techniques 

allow monitoring of cracks development and the advantages of the proposed 

approach are highlighted. 

Chapter 7 presents detection and monitoring of crack in a relatively complex 

concrete-steel composite under cyclic loading. Experiments are performed on the 

composite member under cyclic load with SAs mounted on its RC slab to detect 
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load-induced cracks. The measurements with a mechanical strain gauge are also 

conducted. 

Chapter 8 provides concluding remarks of the thesis and some suggestions for future 

works. 
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Chapter 2 : Literature Review  

 

2.1 Introduction 

Concrete is one of the most widely used construction materials in 

infrastructure all over the world. Evaluation of concrete quality is a crucial task for 

engineers, as possible disastrous failure or malfunction of civil infrastructure can 

lead to human fatalities, as well as high financial costs. The field of structural health 

monitoring has been pursuing new-sensing technologies for monitoring short and 

long-term performance, and assessing the health condition of critical infrastructure 

systems. 

This chapter consists of three main sections. The first section provides the 

general description of concrete materials and structures, including their 

characterisation based on the Australian standard.  Different types of cracks are 

introduced, that occur in concrete materials and structures before and after hardening. 

The background of sensory techniques for concrete assessment is also presented. The 

second section provides a background of concrete structure health monitoring, using 

piezoceramic transducers, including early age characterisation and detection and 

monitoring of cracks. The final section presents the latest experimental investigations 

of piezoceramic transducers (smart aggregates) on concrete materials and structures. 

2.2 Concrete materials and structures 

Concrete is used in nearly every type of construction. Traditionally, concrete 

was primarily composed of cement, water, and aggregates (including both coarse and 
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fine aggregates). Although aggregates make up the bulk of the mix, it is the hardened 

cement paste that binds the aggregates together and contributes to the strength of 

concrete, with the aggregates serving largely as low-cost fillers (though their strength 

is also important). Concrete is not a homogeneous material, and its strength and 

structural properties may vary greatly depending upon its ingredients and the method 

in which it is manufactured. However, concrete is normally treated in design as a 

homogeneous material. Steel reinforcements are often included to increase the tensile 

strength of concrete; such concrete is called reinforced cement concrete (RCC) or 

simply, reinforced concrete (RC). 

RC has been used in a variety of applications, such as buildings, bridges, 

roads and pavements, dams, retaining walls, tunnels, arches, domes, shells, tanks, 

pipes, chimneys, cooling towers, and poles, because of the following advantages 

(Williams, 2003): 

Moulds to any shape: It can be poured and moulded into any shape varying from 

simple slabs, beams, and columns to complicated shells and domes, by using 

formwork.  

Availability of materials: The materials required for concrete (sand, gravel, and 

water) are often locally available and are relatively inexpensive. Only small amounts 

of cement (about 14% by weight) and reinforcing steel (about 2–4% by volume) are 

required for the production of RC, which may have to be shipped from other parts of 

the country. 
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Water and fire resistance: RC offers great resistance to fire and water. A concrete 

member, with sufficient cover, can have a rating of one to three hours of fire 

resistance without any special fire proofing material. 

Good rigidity: RC members are very rigid due to their increased stiffness and mass. 

Compressive strength: Concrete has considerable compressive strength compared 

to most other materials. 

Economical: It is economical, especially for footings, basement walls, and slabs. 

Low-skilled labour: A comparatively lower grade of skilled labour is required for 

the fabrication, erection, and construction of concrete structures.  

In order to use concrete efficiently, the designer should also know the weakness of 

the material. The disadvantages of concrete include the following: 

Low tensile strength: Concrete has a very low tensile strength, which is about one-

tenth of its compressive strength, and hence cracks when subjected to tensile stresses. 

Reinforcements are, therefore, often provided in the tension zones to carry tensile 

forces and to limit crack widths. If proper care is not taken in the design and 

detailing, and also during construction, wide cracks may occur, which will 

subsequently lead to the corrosion of reinforcement bars and even failure of 

structures. 

Time-dependent volume changes: Concrete that undergoes drying shrinkage, if 

restrained, will result in cracking or defection. Moreover, defections will tend to 

increase with time, due to creep of the concrete under sustained loads (the defection 

may possibly double, especially in cantilevers).  
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Variable properties: The properties of concrete may widely vary due to variation in 

its proportioning, mixing, and curing. Water plays an important role in the 

workability, strength, and durability of concrete, and could change the concrete 

properties significantly. Since cast in situ concrete is site-controlled, its quality may 

not be uniform when compared to materials such as structural steel and laminated 

wood, which are produced in the factory. 

The art of structural design is manifested in the selection of the most suitable 

structural system for a given structure. The arrangement of beams and columns to 

support the vertical (gravity) loads, and the selection of a suitable structural system 

to resist the horizontal (lateral) loads, pose a great challenge to structural engineers, 

as these factors determine the economy and functional suitability of the building 

(Subramanian, 2014, Williams, 2003, Whittle, 2012). 

An RC structure consists of different structural elements, and may also 

contain non-structural elements, such as partitions and false ceilings. The function of 

any structure is to resist the applied loads (e.g. gravitational, dead and imposed loads, 

lateral, wind, and earthquake) effectively and to transmit the resulting forces to the 

supporting ground without differential settlement. At the same time, the structure 

should satisfy adequate safety (strength, stability, and structural integrity), adequate 

serviceability (stiffness, durability, etc.), economy (cost of construction and 

maintenance), durability, aesthetics, environment friendliness, functional 

requirements, and adequate ductility (Subramanian, 2014). 

Safety requirements are paramount to any structure and require that the 

collapse of the structure (partial or total) is acceptably low, not only under the normal 

expected loads (service loads), but also under less-frequent loads (such as 
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earthquakes or extreme wind) and accidental loads (blast, impact, etc.). The collapse 

of a structure due to various possibilities should be prevented, such as exceeding the 

load-bearing capacity, overturning, sliding, buckling, and fatigue fracture. Another 

related aspect of safety is structural integrity and stability. Concrete structures can be 

considered as braced frames, with bracing in the form of shear walls, stairwells, or 

elevator shafts that are considerably stiffer than columns. The structure, as a whole, 

should be stable under all conditions. Even if a portion of the structure is affected or 

collapses, the remaining parts of the structure should be able to redistribute the loads. 

In most developed countries, approximately 40–50% of construction industry 

expenditure is spent on repair, maintenance, and remediation of existing structures. 

The growing number of deteriorating concrete structures not only affects the 

productivity of the society, but also has a great impact on our resources, 

environment, and human safety. It has now been realised that the reason for the 

deterioration of concrete structures is the emphasis placed on mechanical properties 

and structural capacity, while construction quality and life cycle management has 

been neglected (ACI201.2R-08, 2008). Strength and durability are known as two 

separate aspects of RC structures; neither guarantees the other. 

Serviceability requirements are related to the utility of the structure, and 

mean that the structure should satisfactorily perform under service loads, without 

discomfort to the user, due to excessive defection, cracking, vibration etc. 

Serviceability is measured by considering the scale of defection, cracking, and 

vibration of structures, as well as considering durability (amounts of surface 

deterioration of concrete and corrosion of reinforced steel) (Ebrahimpour and Sack, 

2005, Pozos-Estrada et al., 2010).  
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There has been a continuous increase in the strength of concrete over the last 

hundred years; much of the increase has developed since 1980. Around the 1980s, 

the value of blended cements and the use of admixtures were realised. Modern 

concretes have become complex, with almost infinite variations available to meet a 

multitude of requirements. The knowledge bank of how to change the properties of 

concrete and reinforcement is developing rapidly. Furthermore, the concrete safety 

factor has increased during the 20th century (Bungey et al., 2006, Bentz et al., 2006). 

For many structural elements, the serviceability limit state is becoming more 

critical than the ultimate limit state, due to the increase in concrete strength and 

reduction in overall factor of safety.  

2.2.1 Characterisation of concrete structures (property, damages, etc.) 

To adequately predict deflections and crack widths in designs for 

serviceability, methods of analysis are required that realistically account for cracking 

and time-dependent deformations caused by creep and shrinkage of the concrete and 

so too are appropriate material modelling rules. The properties and deformation 

characteristics of concrete that are most often required in serviceability calculations 

are the tensile strength, elastic modulus, creep coefficient and shrinkage strain. The 

elastic modulus is needed in the analysis of structures to estimate the stiffness of 

each member and to determine the internal actions; it is also required to estimate the 

instantaneous deformations caused by internal actions and the stresses induced by 

imposed deformations. The tensile strength of concrete is required to determine the 

extent of cracking due to both applied load and applied deformation. The creep 

coefficient associated with a particular time period and a particular loading regime is 

needed to estimate the time-dependent deformation of the structure, and the 
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magnitude and rate of shrinkage strain is required to predict the development of load-

independent deformations over time and the onset of time-dependent cracking 

(Gilbert and Ranzi, 2010, Plevris and Triantafillou, 1994, Zhou, 1992). 

The strength of concrete is usually specified in terms of the lower 

characteristic compressive cylinder (or cube) strength at 28 days ( ௖݂
´). This is the 

value of compressive strength exceeded by 95% of all standard cylinders or cubes 

tested 28 days after being cured under standard laboratory conditions. The mean 

compressive strength of the sample cylinders or cubes at 28 days ( ௖݂௠ ) is about 

25% higher than the characteristic strength when ௖݂
´ =  reducing to about ,ܽܲܯ 20

10% higher than the characteristic strength when ௖݂
´ =  The in-situ strength .ܽܲܯ 100

of concrete (i.e. the strength of the concrete in the structure on site) is often taken to 

be about 90% of the cylinder strength (AS3600, 2009). 

The tensile strength, ௖݂௧, is defined here as the maximum stress that the 

concrete can withstand when subjected to uniaxial tension. Direct uniaxial tensile 

tests are difficult to perform and tensile strength is usually measured from either 

flexural tests on prisms or indirect splitting tests on cylinders. In flexure, the apparent 

tensile stress at the extreme tensile fibre of the critical cross-section under the peak 

load is calculated assuming linear elastic behaviour, and taken to be the flexural 

tensile strength (or modulus of rupture), ௖݂௧.௙. The flexural tensile strength ௖݂௧.௙ is 

significantly higher than ௖݂௧ due to the strain gradient and the post-peak unloading 

portion of the stress-strain curve for concrete in tension. Typically, ௖݂௧ is about 50-

60% of ௖݂௧.௙. The indirect tensile strength, measured from a split cylinder test, is also 

higher than ௖݂௧ (usually by about 10%) due to the confining effect of the bearing 

plate in the standard test. For design purposes, the lower characteristic flexural 
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tensile strength, ௖݂௧.௙
´  , and the lower characteristic uniaxial tensile stress, ௖݂௧

´ , may be 

taken as: 

௖݂௧.௙
´ = 0.6ඥ ௖݂

´        (2-1) 

and 

௖݂௧
´ = 0.36ඥ ௖݂

´        (2-2) 

The mean and upper characteristic values may be estimated by multiplying the lower 

characteristic values by 1.4 and 1.8, respectively (AS3600, 2009). In serviceability 

calculations, mean values of tensile strength should be used, rather than characteristic 

values in most situations. 

The value of the elastic modulus, ܧ௖, increases with time as the concrete 

gains strength and stiffness. It is common practice to assume that ܧ௖ is constant with 

time, and equal to its value calculated at the time of first loading. A numerical 

estimate of the in-situ elastic modulus may be made from the following formulas, for 

stress levels less than about 0.4 ௖݂௠ for normal strength concrete ( ௖݂
´ ≤  and (ܽܲܯ 50

about 0.6 ௖݂௠ for high strength concrete (50 < ௖݂
´ ≤  and for stresses ,(ܽܲܯ 100

applied over a relatively short period (say up to 5 minutes): 

For  ௖݂௠௜ ≤  :ܽܲܯ 40

௖ܧ = ଵ.ହ0.043ඥߩ ௖݂௠௜  (in MPa)     (2-3) 

For  40 < ௖݂௠௜ ≤  :ܽܲܯ 100

௖ܧ = ଵ.ହൣ0.024ඥߩ ௖݂௠௜ + 0.12൧  (in MPa)     (2-4) 
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where ߩ is the density of the concrete in kg/m3 (not less than 2400 kg/m3 for normal 

weight concrete), and ௖݂௠௜ is the mean in-situ compressive strength in MPa at the 

time of first loading. Equation 2-3 was originally proposed by Pauw (Adrian). Values 

for ܧ௖ obtained using equation 2-3 and 2-4 for in-situ normal weight concrete (ߩ =

2400݇݃/݉ଷ) aged 28 days for different values of ௖݂
´ are given in Table 2-1. The 

mean in-situ strength compressive strength, ௖݂௠௜, in Table 2.1 is taken to be 90% of 

the standard mean cylinder strength, and for 100 MPa concrete is actually smaller 

than the characteristic cylinder strength, ௖݂
´. 

Table 2-1: The elastic modulus for in-situ concrete, ܧ௖ 

ࢉࢌ
´  (MPa) 20 25 32 40 50 65 80 100 

 22.5 27.9 35.4 43.7 53.7 68.2 81.9 99.0 (MPa) ࢏࢓ࢉࢌ

 24,000 26,700 30,100 32,750 34,800 37,400 39,650 42,200 (MPa) ࢉࡱ

 

For stresses applied over a longer time period, significant increases in deformation 

occur due to the rapid early development of creep. Yet in a broad sense, loads of one 

day duration is usually considered to be short-term and the effects of creep are often 

ignored, which may lead to significant error. If the short-term deformation after 1 

day of loading is required, it is suggested that ܧ௖ be reduced by about 20% to account 

for early creep (Gilbert, 1988). Equation 2-5 provides an estimate of the variations of 

the elastic modulus with time (du béton, 1993): 

(ݐ) ௖ܧ = ൭݁
௦ቆଵିටమఴ

೟
ቇ

൱

଴.ହ

 ௖(28)     (2-5)ܧ
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where the coefficient ݏ is taken as 0.38 for ordinary portland cement, and 0.25 for 

high early strength cement, and ܧ௖(28) is the 28-day value of the elastic modulus.  

Eurocode 2 adopts an exponent of 0.3 in equation 2-5 (instead of 0.5) (Institution and 

Standardization, 2004). Typical variations in ܧ௖ with time t are shown in Table 2.2. 

Table 2-2: Increase in elastic modulus with age of concrete ݐ −  (௖(28)ܧ/(ݐ) ௖ܧ)

Cement type 

Age of concrete in days (ݐ) 

3 7 28 90 360 30,000 

Ordinary Portland Cement 0.68 0.83 1.0 1.09 1.15 1.20 

High Early Strength Cement 0.77 0.88 1.0 1.06 1.09 1.13 

 

Other factors which are considered for concrete serviceability calculations are creep 

and shrinkage. These limits of concrete depend on the number of factors, including 

the ambient humidity, the dimensions of the element, the composition, and the age of 

the concrete at the time of loading.  

The creep coefficient at time, ݐ, associated with a constant stress first applied 

at age, ߬, was defined as the ratio of the creep strain at time, ݐ, to the (initial) elastic 

strain and given the symbol, ߮(ݐ, ߬). The most accurate way of determining the final 

creep coefficient is by testing or using results obtained from measurements on 

similar local concretes. However, testing is often not a practical option for the 

structural designer. In the absence of long-term test results, the final creep coefficient 

may be determined by extrapolation from short-term test results, where creep is 

measured over a relatively short period (28 days) in specimens subjected to constant 
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stress. Various mathematical expressions for the shape of the creep coefficient versus 

time curve are available, from which long-term values may be predicted from the 

short-term measurements (Gilbert, 1988, Gilbert and Ranzi, 2010). The longer the 

period of measurement was, the more accurate the long-term predictions. If testing is 

not an option, numerous analytical methods are available for predicting the creep 

coefficient. These predictive methods vary in complexity. Some methods are simple 

and easy to use and provide a quick and approximate estimate of ߮(ݐ, ߬); such a 

method is included in the Australian Standard AS3600-2009 (AS3600, 2009). Some 

other methods are more complicated and attempt to account for the many parameters 

that affect the magnitude and rate of development of creep. Unfortunately, an 

increase in complexity does not necessarily result in an increase in accuracy, and 

predictions made by some of the more well-known methods differ widely (ACI209, 

2008, Bažant and Li, 2008, Bazant and Baweja, 2000). 

To estimate the magnitude of shrinkage strain in normal and high strength 

concrete, a model proposed by Gilbert (Gilbert and Ranzi, 2010) has been presented,  

and is included in the Australian Standard AS3600-2009. Many other approaches are 

available in the following literature: (Rebibou et al., 2003, Weiss et al., 1998, Goto, 

1971, Beeby, 1978, Husain and Ferguson, 1968, ACi, 2001). The model divides the 

total shrinkage strain, ߝ௦௛, into two components: endogenous shrinkage, ߝ௦௛௘, and 

drying shrinkage, ߝ௦௛ௗ, as given in equation 2-6. 

௦௛ߝ = ௦௛௘ߝ +  ௦௛ௗ        (2-6)ߝ

Endogenous shrinkage is taken to be the sum of chemical (or autogenous) shrinkage 

and thermal shrinkage, and is assumed to develop relatively rapidly and to increase 



  

 
 18   

 

with concrete strength. Drying shrinkage develops more slowly and decreases with 

concrete strength. 

2.2.2 Concrete structure crack classifications 

Cracking in reinforced concrete structures is common and normal. In many 

members, it is inevitable. Cracks occur wherever and whenever the tensile stress in 

the concrete reaches the tensile strength of the concrete. If care is not taken during 

construction, cracking can occur in the wet concrete before the concrete sets, due to 

plastic shrinkage or plastic settlement. After the concrete sets and hardens, tensile 

stress at any location in the structure may be caused by many different factors, 

including the applied loads and restraint to deformations caused by early-age heat of 

hydration, autogenous shrinkage, drying shrinkage, temperature changes, settlement 

of the supports. 

Cracks caused predominantly by the internal actions resulting from applied 

loads are often termed structural cracks, which include direct tension cracks, bending 

or flexural cracks, shear cracks, torsion cracks, and bursting cracks. Cracks caused 

by restraint to load independent deformation are often termed intrinsic cracks, which 

include deformations due to early-age cooling, shrinkage or ambient temperature 

changes. Often cracks are initiated by a combination of causes. For example, the 

bending moment at which cracking occurs in a beam or slab may be significantly 

reduced if tensile stresses, caused by restraint to early-age temperature contractions 

and shrinkage acting in the same direction, have developed in the member before 

loading. Although the shrinkage-induced tensile stresses may not be sufficient to 

initiate cracking in an unloaded member, they may initiate cracking in the weeks and 

months after first loading in a lightly loaded member. Shrinkage deformation may 
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also cause significant increases in crack widths with time in a previously cracked 

member. Defects or cracks that occur when the concrete is in the plastic state may 

also provide the initiation point for longer term drying shrinkage cracking. The 

combination of many factors can make the prediction and diagnosis of cracking 

difficult. 

Many of the factors and concrete properties that influence cracking are highly 

variable, and significantly more variable than those that influence the strength of a 

reinforced concrete member, and even more variable than those affecting load-

induced stresses and strains under typical in-service conditions. The early-age 

properties of concrete also depend on the temperature and weather conditions at the 

time the concrete is placed. These factors may not be known at the time the structure 

is designed, but they may significantly affect the on-set and extent of early-age 

cracking. 

Cracks formed by tensile stresses over the entire cross-section of a member, 

due to axial tensile forces and/or restrained shrinkage, are direct tension cracks that 

penetrate completely through a member, although the cracks do taper to the 

reinforcement. Where bending causes a triangular tensile stress distribution over part 

of the cross-section, flexural cracks occur at the tensile face when the extreme fibre 

tensile stress reaches the tensile strength of the concrete. Flexural cracks propagate 

from the extreme tensile fibre through the tensile zone, and are arrested at or near the 

neutral axis. Shear and torsion cause inclined or diagonal cracking in the web of a 

beam. Inclined cracks, caused by shear, penetrate through the web, and torsion 

cracks tend to spiral around the member. The width of each of these crack types 

tends to increase with time due to the gradual development of shrinkage. 
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Many variables influence the width and spacing of both structural and 

intrinsic cracks, including the degree of restraint to thermal and shrinkage 

deformations (both internal and external restraint), the magnitude and rate of 

development of the tensile strength of concrete, the magnitude and duration of the 

loads, the quantity, orientation and distribution of the reinforcement crossing the 

crack, the cover to the reinforcement, the slip between the reinforcement and the 

concrete in the vicinity of the crack (which depends on the bond characteristics of the 

reinforcement), the deformational properties of the concrete (including its tensile 

creep and shrinkage characteristics), and the size of the member. Considerable 

variations exist in the crack width from crack to crack and the spacing between 

adjacent cracks, largely because of random variations in the properties of concrete. 

The various types of cracks that commonly occur in concrete structures are 

classified in Figure 2-1, where cracking in the plastic concrete in the first few hours 

after casting, and before the concrete sets, is distinguished from cracking in the 

hardened concrete. 

Cracks in the plastic concrete are classified as either plastic shrinkage cracks, 

plastic settlement cracks, or formwork or sub-grade movement cracks. These cracks 

cannot be controlled by reinforcement or the provision of movement joints, but they 

can be prevented from occurring if appropriate construction practices are adopted. 
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Figure 2-1: Crack classification chart (a) before and (b) after concrete hardening 

(Gilbert and Ranzi, 2010) 

In Figure 2-1 cracks in the hardened concrete are classified as intrinsic, chemical, or 

structural cracks.  
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Early-age cooling and subsequent shrinkage of concrete are perhaps the most 

common causes of cracking in concrete structures. Early thermal cracking is more 

likely in larger elements where the temperature differentials are large. Thermal 

effects can aggravate and extend plastic shrinkage and plastic settlement cracking, 

although this is not usually a significant problem in thin slabs or floors. Crazing is 

also the result of relatively high surface tensile stresses in immature concrete caused 

by a very early shrinkage differential through the thickness of a member (Collins and 

Sanjayan, 2000). 

The most common causes of chemical cracking in RC structures are cracks 

due to corrosion of the reinforcement. Some concretes are prone to cracking caused 

by a reaction in the presence of water between the alkali in the cement (sodium and 

potassium) and elements in the aggregate, which is known as alkali-aggregate 

reaction (Cabrera, 1996). Cracks caused by delayed ettringite formation are the late 

formation of ettringite and associated expansion that has been observed after heat 

curing of concrete at too high a temperature (Taylor et al., 2001). 

The structural crack is another type of crack which is investigated in this 

dissertation. When concrete structures are subjected to the applied service loads, 

cracking may occur. Cracks caused by bending in reinforced concrete beams and 

slabs (flexural cracks) occur at the tensile face when the extreme fibre tensile stress 

reaches the tensile strength of the concrete (Torres et al., 2004, Borosnyói and 

Balázs, 2005, Wolanski, 2004, Padmarajaiah and Ramaswamy, 2002, Hamrat et al., 

2016). Flexural cracks propagate from the extreme tensile fibre through the tensile 

zone and are arrested at or near the neutral axis (as shown in Figure 2-2a). Flexural 

cracks increase in width as the distance from the tensile reinforcement increases and 
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taper to zero width near the neutral axis. A linear relationship is generally assumed to 

exist between the crack width at the side or soffit of a member and the distance from 

the bar. In general, the spacing between flexural cracks is in the range 0.5 to 1.5 

times the depth of the member. The spacing of flexural cracks in a one-way slab 

specimen can be seen in Figure 2-2c. By contrast, direct tension cracks in a tension 

member are more parallel-sided and extend completely through the member. Direct 

tension cracks in a reinforced concrete member can be seen in the specimens shown 

in Figure 2-2d. 
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Figure 2-2: Structural cracks in a reinforced concrete beam and tension members 

(Gilbert and Ranzi, 2010) 

b) Typical structural cracks at service load in RC beam 

c) Flexural cracks in a one-way slab specimen 

d) Direct tension cracks in a RC tension member 

a) Typical flexural and shear cracks at overloads in RC beam 
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The level of tensile stress that exists in concrete, due to restraint to early cooling and 

shrinkage, directly influences the load at which flexural cracks and/or direct tension 

cracks first occur. In addition, the width of a structural crack at any time after loading 

depends on the level of shrinkage, as well as the level of the service loading. 

As the applied loads are increased above the service load levels, into the 

overload region, the extent of cracking increases, and the steel crossing cracks that 

exist may yield and extend and widen (as shown in Figure 2-3). In the shear span of 

beams, flexural cracks may become inclined, forming flexure-shear cracks, and 

cracks known as web-shear cracks may form within the web of members (see Figure 

2-2b) (Kim and White, 1999). Additional cracking, sometimes called cover-

controlled cracking, occurs in the tension zone in the cover regions around the tensile 

reinforcement (see Figure 2-2b) (Castel and François, 2011). In members subjected 

to torsion, inclined cracks may spiral around the beam. 

 

Figure 2-3: Flexural cracks at overload in a RC beam with ductile reinforcement 

(Gilbert and Ranzi, 2010) 

Controlling cracking in concrete structures is a serviceability requirement. At the 

point of overload, the main design concerns are strength and ductility, and the control 

of cracking is not required. The wide cracks at overload provide warning of overload 
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and structural distress. These wide cracks are associated with large deformations that 

are a necessary requirement for ductility. The bottom specimen, shown in Figure 

2-2d, is a tension member containing ductile reinforcement. The member continued 

to carry the peak load after a large elongation, as is evidenced by the wide cracks, 

and in spite of obvious signs of distress. By contrast, the upper specimen in Figure 

2-2d contained low ductility reinforcement and failed suddenly, due to the fracture of 

the bars, while the crack width remained relatively fine and the specimen showed no 

obvious sign of distress. 

2.2.3 Sensory techniques for concrete assessment 

To ensure structural integrity, and hence maintain safety, in- service health 

and usage monitoring techniques are employed in many engineering areas. Structural 

health is directly related to structural performance and in this respect, it is one of the 

major parameters with regard to safety of operations. Real-time structural health 

monitoring and controlling systems can provide instantaneous information on a 

condition of a specified structure. This will result in a significant increase of safety 

margins and reductions in maintenance cost (Chang, 1998, Sohn et al., 2003, Park et 

al., 2007). 

In concrete structures, a destructive evaluation method is generally used, in 

which concrete cylinders are crushed to directly obtain concrete information. This 

method is straightforward and reliable. However, this method is not suitable or 

convenient to monitor in situ, large-scale reinforced concrete structures (Shiotani and 

Aggelis, 2009, Song et al., 2008).  Therefore, non-destructive evaluation (NDE) has 

been effectively used to monitor and evaluate material or functional structures 

without impairing function and performance. Common NDE methods basically 
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include: visual inspection, magnetic particle testing, radiographic method, ultrasonic 

testing (UT), acoustic emission method, liquid penetrant testing, eddy current testing. 

These methods assigned to passive sensor diagnostics (PSD) or active sensing 

diagnostic (ADS) (Wang et al., 2001). In ADS, an ultrasonic signal is generated by a 

pulsar and detected by a receiver. Hence, through continuously tracking the evolution 

of detected ultrasound signals, information on the status of the material or structure 

can be obtained. While for PSD, ultrasonic signal or acoustic emission is generated 

by the rapid release of energy from a localised source within a material or structure. 

The released energy propagates in the form of transient elastic waves and can be 

detected by a piezoelectric transducer. The output of the transducer is further 

processed by suitable electronic equipment and interpreted into valuable information 

about the source causing the energy release. 

Ultrasonic (sound having a frequency above 20,000 Hertz) testing has 

attracted great attention due to its features, including low cost, high accuracy, less 

harmfulness to human life, and environmental friendliness. Normally, the UT method 

can be subdivided into ADS and PSD. As a possible means of non-destructive 

evaluation method, UT has been studied by Mason, McSkimin and Shockley in a 

quantitative manner (Mason et al., 1948). UT techniques have been extensively 

studied in materials engineered during the 1950s (Krautkrämer and Krautkrämer, 

1977). UT-based evaluation methods have been widely used for characterisation of 

concrete materials since the 1990s (Ohtsu et al., 1991). Theoretical investigation, 

based on analogy of seismology, was introduced to reflect local behaviour of 

concrete micro-cracks (Lu, 2010). A series of automatic monitoring systems and 

evaluation software were designed to carry the task (Grosse, 2002, Reinhardt and 

Grosse, 2004). Carpinteri et al (2007) studied the feasibility of the application of AE 
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in monitoring concrete structures. Zhu et al (2013) studied the feasibility of 

piezoelectric actuators/sensors for the detection of delamination between steel bars 

and concrete using an embedded sensor. 

However, with the swift development of modern data processing devices and 

improvement on signal analysis technique, the piezoelectric transducer has become a 

weak link of the UT technique chain. Most of the transducers were designed as 

outside components attached on the surface of concrete materials. The compatibility 

between the piezoelectric sensor and concrete material turn out to be a critical issue 

in UT technique. A good compatibility on acoustic properties and mechanical 

properties can ensure accurate and reliable monitoring results. Yet, there exist 

relatively large differences on stiffness and the acoustic impedance between concrete 

and traditional piezoelectric ceramic sensors. 

A brand new cement-based piezoelectric composite has been developed that 

owned an acoustic impedance value quite close to that of the concrete matrix, which 

ensured a minimum signal distortion and maximum signal energy transmission 

efficiency (Li et al., 2002). Based on cement-based piezoelectric composite, assorted 

new monitoring systems need to be designed and developed to match the 

characteristic of introduced composite. New systems shall be geared to the needs of 

practical testing instead of mere laboratory usage. Apart from monitoring system 

design, various suitable evaluation methods may be continually proposed to 

comprehensively study: the fracture process or the hydration process of concrete 

material and structures, to properly reveal the micro-crack behaviour of concrete 

during fracture process, microstructure development of early-age concrete during 

hydration (Liu et al., 2011). Hydration heat-based monitoring and ultrasonic-based 
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monitoring methods are major categories that are well-known for non-destructive 

early-age performance monitoring of concrete (Song et al., 2008). 

The hydration heat-based monitoring method was considered by Ayotte et al. 

(Ayotte et al., 1997) by monitoring the heat generated during the hydration process. 

The heat can be continuously monitored by a thermocouple or fibre optical sensors, 

especially fibre Bragg grating sensors (Chen and Ansari, 1999, Lu and Xie, 2006, 

Ren et al., 2006, Zhang et al., 2006, Zou et al., 2012, André et al., 2012). However, 

fibre optical sensors are fragile and expensive, and offer only local measurements, 

which limit their application. 

The ultrasonic-based monitoring method is the velocity of an ultrasonic wave 

that is thoroughly related to the inner physical properties of the medium. Thus, early-

age concrete strength can be monitored by observing the propagation velocity of 

ultrasonic waves (Krauss and Hariri, 2001, Demirboğa et al., 2004, Voigt et al., 

2005a). The disadvantage of this method is its high cost and bulky equipment. 

Kong et al. (2013) investigated the three states of very-early age concrete 

hydration based on classification of the received electrical signal using a 

piezoelectric sensor. Specifically, the amplitude and frequency response were of 

interest. Both the swept sine wave and the constant frequency sine wave excitation 

methods presented the same conclusion on the three concrete states during the 

hydration, which enhances the reliability of the piezoelectric sensor and active-

sensing approach for very early-age concrete hydration monitoring. On other hand, 

the detection of local damage, such as cracks in early-age concrete, requires higher 

frequencies for which piezoelectric-based transducers are ideal candidates because of 

their small size, low cost, and large bandwidth (Dumoulin et al., 2014).  
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In the field of damage detection using ultrasonic transducers, two major 

trends coexist. Acoustic emission testing is one of the most widely used techniques, 

which consists of recording acoustic events generated by the appearance of cracks 

using a large network of sensors. The technique allows us to localise the source of 

each event, either by comparing the time of arrival of the acoustic wave on the 

different sensors or by correlating the acoustic events with the crack mode (Grosse 

and Ohtsu, 2008, Ohtsu et al., 1991, Aggelis, 2011, Behnia et al., 2014). The second 

trend is based on active ultrasonic systems. In such systems, the acoustic waves are 

generated by the monitoring system itself. The wavelengths corresponding to the 

frequency bands used for active sensing are much smaller than the ones used in 

monitoring systems based on ambient low-frequency vibrations. Consequently, there 

is a stronger interaction with local defects, as cracks enable their detection (Planès 

and Larose, 2013). The methods have been first developed and intensively used in 

aeronautics for metallic and composite materials. During the last twenty years, a few 

research teams have started to apply these techniques to concrete structures using 

either surface-mounted or embedded transducers (Bungey et al., 2006). The latter has 

several advantages, which are the added flexibility in the choice of their position and 

better integration in the overall design of the structure (Dumoulin et al., 2014). 

From the literature reviewed, the piezoelectric shows a particularly good 

capacity to satisfy exigent applications, due to unique mechanical strength, wide 

frequency response range, and favourable cost.  
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2.3 Concrete structure health monitoring using piezoceramic 

transducers 

The direct piezoelectric effect was discovered in 1880 by the Jacques and 

Pierre Curie brothers. They found that when a mechanical stress was applied on 

crystals such as tourmaline, topaz, quartz, Rochelle salt and cane sugar, electrical 

charges appeared, and the charges were proportional to the stress. And soon after, the 

converse piezoelectric effect was discussed by Lippmann (Lippmann, 1987). The 

discovery of piezoelectricity generated significant interest within the European 

scientific community. The first application for piezoelectric materials appeared 

during World War I. Langevin and his co-workers in France used the effect of 

converse and direct piezoelectric effect to the emission and detection of underwater 

sound waves. Nicholson (1918) and Cady (1919) invented a piezoelectric resonator 

based on property observation of piezocrystals driven at frequencies close to their 

mechanical resonances. Many classic piezoelectric, applications such as microphones 

and accelerometers, were introduced and commercialised in this period. 

Study of piezoelectric materials received a great deal of attention during and 

after World War II. Shubnikov predicted that piezoelectric properties would be 

discovered in amorphous and polycrystalline materials. Countries such as Japan and 

the former Soviet Union did a significant amount of work aiming at very high 

dielectric constants for construction of capacitors. Piezoelectric ceramic materials 

were discovered in this period; Piezoelectric ceramic is a mass of perovskite 

manmade crystals which exhibits strong piezoelectric properties. These discoveries 

inspired a great deal of research on properties of ceramic ferroelectrics and their 

application in a wide range of ultrasonic devices and systems. In the early 1950s, 
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solid solution of lead zirconate titanate (PZT) was introduced by Jaffe et al. which 

have very strong piezoelectric properties (Jaffe et al., 1971). In recent years, there 

has been a tremendous amount of research on piezoelectric ceramic composites and 

piezoelectric polymers. Pioneer work on piezoelectric composite at Pennsylvania 

State University was done by Rittenmyer et al. (1982), Safari et al. (1998), and 

Bhalla et al. (1985). Piezoelectric composite combines the function of 

piezoelectricity and the advantage of appended materials. The introduction of 

piezoelectric composite significantly widened the field of application, especially in 

medical imaging, generator, transmitters and detector of surface acoustic waves. 

Piezoelectricity is a property of certain classes of crystalline materials. When 

mechanical pressure is applied to the sample made of these materials, a charge will 

be induced on the electrode surface of the sample. The charges are linearly 

proportional to the magnitude of the applied pressure within a certain range. 

Conversely, when a voltage is applied to one sample of these materials, the sample 

changes its shape. From an energy-exchange-viewpoint, piezoelectricity is the 

property to convert mechanical energy into electric energy and vice versa. Sensing of 

piezoelectric materials is the application of mechanical energy converting into 

electrical energy, while actuating is the implementation of electrical energy 

converting into mechanical energy (Lu et al., 2013, Lu, 2010). An important group of 

piezoelectric polycrystalline ceramics is ferroelectric materials with the perovskite 

crystal structure, such as barium titanate and PZT. Ferroelectric ceramics become 

piezoelectric when poled. PZT and their modifications are solid solutions of lead 

titanate and lead zirconate.  
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The ability of a piezoeletric material to transform electrical energy to mechanical 

energy, and vice versa, is measured by piezoelectric coefficient. This transformation 

of energy between mechanical and electrical domains is employed in both 

piezoelectric sensors and actuators (see Figure 2-4).  

 

Figure 2-4: Piezoelectric coupling coefficients (Gu, 2007) 

Piezoceramics have been known as a simple, low-cost, lightweight, and easy-to-

implement material for passive and active control of structural vibration. Because of 

the piezoelectric nature of the material, it can transform mechanical vibration energy 

of the structure to electrical energy or vice versa. Piezoceramics are available in 

various forms such as stack actuators, patch actuators, flexible patch actuators, 

macro-fibre composite actuators developed at the NASA Langley Research Centre 

(Wilkie et al., 2000), and active fibre composite actuators developed at the 

Continuum Control Corporation. Bent et al. (2000) presented Active Fibre 

Composite (AFC) actuators that are comprised of piezoelectric fibres, polymer 

matrix, and electrodes. PZT fibres are uni-directionally aligned in order to sense and 

actuate in-plane stresses and strains for structural actuation applications. Horner 

(2001) developed a new packaging technique for piezoceramic wafers in which the 

encapsulation of the piezoceramic incorporates the electrical leads. Their technique 
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for an encapsulation produces a hermetically sealed package that is also flexible and 

can be surface mounted or embedded into composites. 

Stacking type actuators are commonly used piezoceramics in civil 

applications, and they are also known as multi-layered actuators. Multi-Layer 

Piezoelectric Actuators (MLAs) offer many advantages, such as high energy density, 

compared to other active materials, and consequently they are increasingly used in 

various smart actuator applications (Bouchilloux et al., 2004). Typically, a 100 mm 

length, with a cross-sectional area of 1 cm2, provides a free stroke of 100 μm and a 

blocked force of about 3 kN. These MLAs do have some disadvantages because of 

the low tensile strength. This is a source of failure in bending conditions, in vibration 

environments, and in dynamic applications where high transient stresses are present. 

Recently, Cedrat Technologies (Bouchilloux et al., 2004) introduced 

mechanically Amplified Piezoelectric Actuators (APAs) to overcome the tensile 

stress limitation of MLAs, by applying a compressive prestress on the ceramic, 

which, additionally, enhances the piezoelectric deformation. The APA actuator form 

shows significant improvement in terms of output energy per actuator mass or per 

actuator volume. 

PZT is a piezoceramic material that has the property of generating a certain 

voltage when a strain is applied on the material, and conversely, in a large frequency 

range. This kind of material is therefore suitable to generate or measure mechanical 

waves. In the field of design of embedded piezoelectric-based transducers, one can 

report two main different approaches. The first approach uses thin PZT patches cast 

in small mortar pieces with multiple coating layers. The design of these transducers 

is based on those initially produced at the University of Houston (Song et al., 2008). 
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Most of these transducers have been designed for compression waves (P-Waves), for 

damage detection (Dumoulin et al., 2015), and monitoring of early age properties of 

concrete (Gu et al., 2006, Dumoulin et al., 2012). Such embedded transducers have 

also been developed to simultaneously measure the P-Wave and S-wave velocities 

(Li et al., 2009). Piezoelectric-based transducers can also be composed of composite 

piezoelectric material where the piezoelectric material is embedded in a matrix of 

cement (Newnham et al., 1980). The piezoelectric material can be in the form of 

either particles of piezoelectric material (0–3 composite), multiple PZT plates (2–2 

composite), or PZT rods (1–3 composite) (Li et al., 2002, Dong and Li, 2005, Cheng 

et al., 2010). These type of transducers have been used to assess the hydration 

properties of concrete (Qin and Li, 2008), acoustic emission detection (Qin et al., 

2009), and damage monitoring (Lu et al., 2011). They offer a better impedance 

matching, but are more difficult to manufacture. 

In the presence hydration properties of concrete, various compounds in 

cement particles hydrate to form new compounds, which are the infrastructure of 

hardened cement paste in concrete. C3S (Tricalcium silicate) and C2S (Dicalcium 

silicate) in cement hydrates to form the most important strength contributor, calcium 

silicate hydrate, which is well-known for its amorphous character; their reaction also 

produces calcium hydroxide with a distinctive hexagonal tabular morphology. C3A, 

sulfate, and water reacts to form a hexagonal crystal named calcium sulfoaluminates 

and normally, they are observed to be long slender needles. Pores are the major 

component of hydrated concrete. According to the size of the pores, they can be 

classified as a capillary pore, gel pore, and entrapped isolated air pore. The hydration 

compounds and the pore’s structures make up the fundamental microstructure of 

hydrated concrete. Since the microstructure of concrete determines the mechanical 
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behaviour, a great effort has been made to study and evaluate the process and 

mechanism of microstructure development during concrete hydration (Lu et al., 

2013). 

Various methods have been developed to monitor and characterise the 

hydration of cementitious materials (Qin and Li, 2008, Dumoulin et al., 2012, Lu et 

al., 2013, Xiao and Li, 2008, Xiao, 2007, Ni et al., 2012). Temperature measurement 

is a traditional and common method to monitor early-age concrete hydration (Azenha 

et al., 2011, Mikulić et al., 2013, Norris et al., 2008). Branco et al. present a 

numerical method dealing with the environmental interaction and concreting phases 

to measure the temperature and stress characterisation during the first days after 

casting (Branco et al., 1992). Sayers and Dahlin (1993) discussed the possibility of 

continuous measurement of velocity and amplitude of ultrasonic compressional 

waves to reflect the evolution of cement paste microstructure development. Based on 

their results, the microstructure development of cement paste was treated as a process 

from a viscous suspension of irregularly shaped cement particles into a porous elastic 

solid with non-vanishing bulk and shear moduli. Inspired by this idea, Grosse (2002) 

and Song et al. (2008) made and improved a series of ultrasound testing devices 

aimed at characterising the hydration and deterioration process of cement-based 

materials. Ye et al. (2004) studied the development of microstructure in cement-

based materials by means of HYMOSTRUC model simulation and ultrasonic pulse 

velocity measurement. They explained and clearly identified the microstructure 

development and percolation time point of cement paste. A non-contact resistivity 

method was introduced by Li et al. (2003) to evaluate the hydration process of early-

age concrete. It was found that non-contact resistivity measurement was especially 

suitable for detailed monitoring of concrete at a very early-age, since it was quite 
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sensitive to the ionic concentrations and mobility in the liquid and pore solution, and 

various distinct hydration stages were identified (Xiao and Li, 2008). 

Recently, an electromechanical impedance (EMI) based method has been 

used for concrete characterisation and damage detection (Divsholi and Yang, 2012, 

Park et al., 2003, Yang et al., 2008). It was found that the impedance of Portland 

cement paste is sensitively related to the paste hydration process (Yang et al., 2010). 

To  indicate the characteristics of early hydration concrete,  Yang et al. employed the 

measured admittance of a reusable PZT sensor and the root mean square deviation 

(RMSM) method (Yang et al., 2010). 

Lu et al. (2013) studied hydration processes of early-age concrete using two 

non-destructive monitoring systems: embedded active acoustic and non-contact 

complex resistivity. They found that the hydration stages could be distinguished 

according to the characteristics of acquired parameters, and the maturity of the 

concrete. Furthermore, they found that the non-contact complex resistivity 

measurement turned out to be capable of detecting the variation of the liquid phase 

morphology and pore structure. 

Wave-propagation-based concrete hydration monitoring, including ultrasonic 

wave measurement, has also been studied to reflect the change of concrete properties 

(Abo-Qudais, 2005, Keating et al., 1989, Voigt et al., 2005a, Voigt et al., 2005b, 

Desmet et al., 2011). Both the electrical resistivity and ultrasonic techniques have 

been applied for cement-based materials hydration monitoring during the first seven 

days and four stages of the concrete hydration (Zhang et al., 2009). SAs were 

proposed by Song et al (Song et al., 2005, Song et al., 2008) as multi-functional 

sensors and an active-sensing approach, using a couple of SAs for concrete 



  

 
 38   

 

characterisation and structure health monitoring (Yang et al., 2010, Song et al., 2008, 

Gu et al., 2006, Kong et al., 2013, Chung et al., 2014). It is shown that the SAs can 

be embedded at the desired position in a concrete structure before casting, to perform 

early-age concrete compressive strength determination and hydration characterisation 

monitoring (Chung et al., 2014, Gu et al., 2006, Kong et al., 2013, Dumoulin et al., 

2012).  

Recently, piezoceramic based smart aggregates were used by Kong et al. 

(2013) to monitor very early-age concrete (0-20 hour) hydration characterisation. 

The electrical signal transferred from the Smart Aggregate sensor was recorded 

during the test. As the concrete hydration reaction was occurring, the characteristic 

of the electrical signal continuously changed. These results were based on 

investigation of the three states (fluid, transition, and hardened state) of very early-

age concrete hydration based on the classification of the received electrical signal. 

Specifically, the amplitude and frequency response of the electrical signal were of 

main interest. Both the swept sine wave and the constant frequency sine wave 

excitation methods presented the same conclusion on the three concrete states during 

the hydration, which enhanced the reliability of the active-sensing approach for very 

early-age concrete hydration monitoring. 

 

2.3.1 Detection and monitoring of cracks in concrete structures 

The piezoelectric material will generate an electric charge when it is 

subjected to a stress or strain (the direct piezoelectric effect); the piezoelectric 

material will also produce a stress or strain when an electric field is applied to a 
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piezoelectric material in its poled direction (the converse piezoelectric effect). Due to 

this special piezoelectric property, piezoelectric material can be utilized as both an 

actuator and a sensor. This property enables the multi-functionality of the 

piezoelectric materials. 

A concrete structure can be subjected to several factors that may damage it 

and potentially lead it to be turned out of service, or in the most dramatic cases, to 

the complete failure. These factors are either climatic, chemical, or accidental. To 

ensure the safety of a structure, it is important to evaluate its state regularly. Visual 

inspections and destructive tests were, until recently, the only ways to assess the state 

of the structure. Such inspections require specific equipment and manpower. They 

are consequently very costly and only a few numbers of tests can be carried out. 

Furthermore, visual inspection can only identify macroscopic damage at accessible 

locations. As an alternative, several non-destructive testing (NDT) techniques have 

been developed during the last thirty years (McCann and Forde, 2001, Malhotra and 

Carino, 2003). The recent developments in the field of NDT have led to the 

possibility of automated tests, which greatly improves their repeatability and 

efficiency (Maierhofer, 2010).  

Damage detection and failure analysis of concrete structures have been 

studied for many years (Otani and Sozen, 1972, Abrams, 1979, Saiidi and Sozen, 

1981, Kreger and Sozen, 1983, Park et al., 1985, Hassan and Sozen, 1997, Wang and 

Wen, 2000, Nojavan and Yuan, 2006). Various sensors and methods have been 

developed for damage detection and health monitoring. Fiber optical sensors (FOS), 

especially Fiber Bragg Grating (FBG) sensors, are now used for the health 

monitoring of various RC structures (Zhang et al., 2006, Ren et al., 2006, Lu and 
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Xie, 2006, Chen and Ansari, 1999). However, FOSs offers only local measurements, 

limiting their applications. These methods are more suitable to detecting large-scale 

effects than local damage (Deraemaeker and Worden, 2012). The detection of local 

damage requires higher frequencies, for which piezoelectric PZT transducers are 

ideal candidates because of their small size, low cost, and large bandwidth.  

In the field of damage detection using ultrasonic transducers, two major 

trends coexist. Acoustic emission testing is one of the most widely used techniques. 

It consists of recording acoustic events generated by the appearance of cracks using a 

large network of sensors. The technique allows us to localise the source of each event 

by comparing the time of arrival of the acoustic wave on the different sensors or by 

correlating the acoustic events with the crack mode (Ohtsu, 1996, Gooch, 2011, 

Aggelis, 2011, Behnia et al., 2014). The second trend consists of using active 

ultrasonic systems. In such systems, the acoustic waves are generated by the 

monitoring system itself. The wavelengths corresponding to the frequency bands 

used for active sensing are much smaller than the ones used in monitoring systems 

based on ambient low-frequency vibrations. Consequently, there is a stronger 

interaction with local defects, as cracks enable their detection (Planès and Larose, 

2013). The methods were first developed and intensively used in aeronautics for 

metallic and composite materials. During the last twenty years, a few research teams 

have started to apply these techniques to concrete structures using surface-mounted 

or embedded transducers (Naik et al., 2004, Bungey et al., 2006). The latter has 

several advantages, which are the added flexibility in the choice of their position and 

better integration in the overall design of the structure. Within this framework, the 

concept of smart aggregates have been developed by researchers at the University of 
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Houston (Song et al., 2007, Song et al., 2005, Song et al., 2008, Song et al., 2006, Gu 

et al., 2006).  

In the field of active sensing using piezoelectric-based transducers, several 

authors have used impedance curves to assess the strength and damage state of 

concrete. The impedance curve is measured using a single PZT transducer, which is 

very attractive from a practical point of view. Experiments show that this technique 

is sensitive to damage in very local areas around the transducers (Park et al., 2006, 

Tawie and Lee, 2010). Other techniques are based on a pitch catch configuration and 

require at least two transducers (one emitter and one receiver). The methods differ 

mainly in the choice of the signal generated at the emitter side (Dumoulin et al., 

2014). 

Harmonic signals can be used to reveal nonlinearities due to damage, which 

generate harmonics of the fundamental frequency (Shah et al., 2009, Shah and 

Ribakov, 2010). A second type of excitation is the chirp signal, which allows more 

energy to be sent into the system and therefore enhances the signal-to-noise ratio of 

the measurements. This type of excitation signals has been recently used for damage 

detection in concrete (Song et al., 2007, Liao et al., 2011). The main idea of this 

technique is to measure the evolution of the energy contained in the wave as a 

function of the evolution of cracking, using a wavelet packet decomposition of the 

signal. This technique has been shown to be sensitive to significant damage. 

Finally, pulse excitation is traditionally used in commercial systems designed 

to estimate the quality of the concrete based on the ultrasonic pulse velocity (UPV). 

This system consists of external probes that need to be placed on two opposite faces 

of the concrete specimen, using an adequate coupling agent. In practice, for real 
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structures, this limits the application to through thickness propagation, or repeated 

wave reflections, which makes the interpretation difficult. It is also often impractical 

due to limited accessibility when in service. Coupling such systems to embedded 

piezoelectric-based transducers can overcome most of these difficulties. 

More complex analysis of the wave amplitude generated by pulse excitation 

can be carried out, such as backscattered waves amplitude analysis. In this method, 

the response signal attenuation form (decreasing exponential) is used as a damage 

indicator (Chaix et al., 2003). The backscattered waves result from numerous 

interactions, such as voids, cracks, or microcracks in the concrete structure. Each 

contains information over the state of the material. Indeed, in multiple scattering 

media, the wave path can be compared to the Brownian random behaviour of a 

particle (Pacheco and Snieder, 2005). Thus, one can describe the average intensity of 

the wave in time and space using the diffusion equation (Tourin et al., 2000). Several 

authors have studied the impact of damage on diffusivity of concrete (Deroo et al., 

2010, Quiviger et al., 2012). Recently, some authors have used the so-called coda-

wave interferometry method (Planès and Larose, 2013, Snieder, 2006) to study the 

influence of stress on the wave velocity (Zhang et al., 2012, Larose and Hall, 2009), 

as well as the evolution of the acoustoelastic parameters of concrete with the 

appearance of damage (Schurr et al., 2011, Shokouhi et al., 2010). This method is 

based on the principle that the received signal in multiple scattering media is the 

superposition of the same wave packets with random amplitudes and delays. The 

‘damaged signal’ is therefore a stretched copy of the original signal. 
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Figure 2-5: Schematic of stress wave propagation inside the specimen (a) stress wave 

propagating parallel to the crack and (b) stress wave propagating perpendicular to the 

crack (Feng et al., 2015) 

2.4 Smart aggregates material, setup, and arrangement 

An emerging field of study has arisen, in which smart material and structure 

technology has been applied in civil infrastructures. These applications include 

condition/health monitoring, damage assessment, structural control, structural repair 

and maintenance, integrity assessment, and more recently, asset management, 

preservation, and operation of civil infrastructures. The potential benefits of this 

technology include improved infrastructure reliability and longevity, enhanced 

structural performance and durability, improved safety against natural hazards and 

vibrations, and a reduction in life-cycle costs in operating and managing civil 

infrastructures (Han et al., 2015). 

Piezoelectricity includes the direct piezoelectric effect and the converse 

piezoelectric effect. The direct piezoelectric effect is when an electric charge is 

generated in a piezoelectric material subjected to either stress or strain. The converse 

piezoelectric effect is the reverse process. Stress or strain is produced due to the 

applied electric field. The lead zirconate titanate (PZT) is one of the most common 

piezoelectric materials successfully used as smart materials (Song et al., 2008).  

(a) (b) 
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Since the fragile PZT has a lot of limitations in field applications, a Smart 

Aggregate is fabricated by sandwiching the waterproofed PZT with protection 

materials, as shown in Figure 2-6 (Hou et al 2012). The diameter and the height of 

the Smart Aggregate are 25 mm and 20 mm, respectively. The dimension of the PZT 

patch is 15mm×15mm square. 

 

Figure 2-6: A Smart Aggregate with (a) connector and (b) its structure (Feng et al., 

2015) 

Smart Aggregate can be utilised as both the actuator and the sensor, based on the 

piezoelectricity. The active sensing approach using smart aggregates is illustrated by 

two smart aggregates which are used as an actuator and a sensor, respectively. The 

guided wave is applied to the Smart Aggregate and generates a stress wave. The 

spectrum of excitation frequencies starts from a very low frequency and increased to 

a high frequency (e.g., 100 Hz to 150 kHz). Smart aggregates have been used in 

concrete structural health monitoring research, including crack detection of the 

concrete shear wall, crack detection of reinforced concrete column, early age 

concrete hydration monitoring, and active de-bonding monitoring of a concrete-filled 

steel tube (Song et al., 2008, Yan et al., 2009, Liao et al., 2011, Xu et al., 2013, Zou 

et al., 2015, Feng et al., 2015, Zhang et al., 2016, Su et al., 2016, Feng et al., 2016). 

(a) (b) 
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The previous investigation’s results show that the detection area was 

concentrated between the actuator and sensor (Song et al., 2008, Kong et al., 2013). 

Therefore, the detection covered area by transducers was very critical in the 

arrangement of the sensors, and proved to be a challenge to the researchers. 

An experimental study was done by Kong et al. (2013) in which they 

investigated using a Smart Aggregate for early-age concrete monitoring, as requested 

by Texas Department of Transportation. The two smart aggregates were fixed to 

rebars prior to concrete casting. In this concrete specimen, the distance between the 

two rebars, which were used to install the two SAs, was 50.8 mm. since the Smart 

Aggregate diameter was 25 mm, so there was a very small distance between the 

actuator and sensor. Dumoulin et al. (2012) also organised a series of experimental 

investigations for early-age concrete health monitoring using different distances (6 

and 10 cm). Their results aligned with the results obtained on the same concrete 

using a commercial system for 6 cm, while not receiving any signal for the distance 

of 10 cm’s. And hence, as mentioned previously, the covered area by transducers 

was very important for researchers and much of the investigations to achieve highest 

covered area were unsuccessful. Some researchers suggested using more than one 

couple (actuator and sensor) in the critical zone of structure to avoid this problem 

(Dumoulin et al., 2014, Feng et al., 2015).  

The Belgian company MS3 takes an interest in evaluating the quality of 

concrete around the anchorage system of highway security barriers after substantial 

shocks. The failure mechanism can be viewed as a combination of bending and the 

failure of the anchorages. Accordingly, the company organised the laboratory 

monitoring tests using smart aggregates for a three-point bending test and several 
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pull-out tests (Dumoulin et al., 2014). They used the general sensor arrangement (one 

actuator and one sensor) for the three-points bending test, while adding additional 

sensors in a pull-out test improved their accuracy of detection (Figure 2-7). In our 

research, we took the advantages of this sensor arrangement and introduced a new 

setup for concrete early-age hydration monitoring (Chapter 4) with two different 

distances (50 and 100 mm). 

 

Figure 2-7: Sensor arrangement for (a) three-points bending test, one emitter 

(actuator) and one receiver and (b) pull-out test, two receivers and one emitter 

(Dumoulin et al., 2014) 

(a) Three-points bending test 

(b) Pull-out test 
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Recent investigations made some changes and improvements to the general sensor 

arrangement to ensure clarity of detection and evaluation of damages in concrete.  

The improvement would be a series of changes in sensor arrangement in terms of 

number and location or measurement setup.  

In the experimental investigation by Dumoulin et al. (2015) for crack 

detection on an RC beam, they added a notch in the bottom of the beam to locally 

reduce the strength of the beam and create stress-concentrations (Figure 2-8); cracks 

were not always initiated exactly at the centre of the beam due to the heterogeneity of 

concrete. This pre-cracking (notch) ensured the crack initiation was at the right place. 

This method is not applicable for real structures and only can be used for laboratory 

investigation. 

 

Figure 2-8: Notch added to bottom of beam to ensure the crack initiation started from 

the notch (Dumoulin et al., 2015) 

Another setup has been used by Zhao et al. (2016) for health monitoring of RC 

beams using the combination of an embedded Smart Aggregate and surface mounted 

piezoceramic patches. A three-point bending test was conducted to induce damage in 

a) Before test b) After test 
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the concrete beam. The Smart Aggregate was embedded in a concrete beam as an 

actuator (or transmitter), and piezoceramic patches were attached on the surface of 

the concrete beam as sensors (Figure 2-9a). 

 

Figure 2-9: Schematic of embedded Smart Aggregate and mounted piezoceramic 

patches for (a) RC beam and (b) concrete-encased composite structure (Zhao et al., 

2016, Liang et al., 2016) 

A similar method was also proposed by Zeng et al. (2015) and Liang et al. (2016) for 

bond slip detection of concrete-encased composite structure. An active sensing 

approach has been to provide monitoring and early warning of the development of 

bond slip in the concrete-encased composite structure. The setup was based on a 

Smart Aggregate embedded in the concrete which acted as an actuator and generated 

Smart aggregate 

PZT sensor 

Steel plate 

Concrete 

(a) RC beam 

(b) Concrete-encased composite structure 

Concrete 

Smart aggregate 

PZT sensor 

Rebar 
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desired shear stress waves. Distributed piezoceramic transducers installed in the 

cavities of steel plates acted as sensors and detected the wave response from the 

shear mode Smart Aggregate (Figure 2-9b). The disadvantage of the above 

investigations is the proposed setup is not applicable for existing structures due to the 

necessity of having at least one embedded actuator.  

2.5 Summary 

This literature review shows wave-propagation testing has provided an 

innovative approach for the characterisation of early-age concrete and the detection 

of cracks in concrete structures. Previous investigations show applications of SA 

techniques are promising, with the advantages of structural simplicity, low cost, 

quick response, and high reliability.  

However, several issues are still remaining and leave challenging tasks to 

explore. The concrete hydration characterisation, using embedded SAs, has not 

received enough attention in previous investigations. It is well known that the early-

age concrete hydration is a very significant part of the entire concrete hydration 

which can affect the final compressive strength. In this study, the active-sensing 

approach using SAs concentrated on early-age concrete hydration characterisation, 

with different water to cement ratio.  

This literature review shows that remaining challenges face researchers in the 

area of localisation of sensors in concrete structures for detection and monitoring of 

cracks. The transducers arrangement, using SAs mounted on the surface of concrete, 

has not been reported. The performance of the crack initiation and propagation 
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approach monitoring, using SAs for slap under cycling loading, has also not been 

investigated.  
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Chapter 3 : Smart Aggregate Based Nondestructive Testing 
Systems 

 

3.1 Introduction 

Non-destructive testing of concrete material and structures has been used for 

material characterisation, and detection and evaluation of defects such as voids, 

damages and corrosion of rebars. There are several NDT techniques which have own 

advantages and limitations. An embedded SA based approach/arrangement has 

demonstrated a great potential for the structural health monitoring of concrete 

material and structures. Another SA based approach uses SAs transducers embedded 

in and mounted on concrete based members. As mentioned, embedded SAs must be 

implemented in new concrete structures during their fabrication. This is one of the 

limitations of these two approaches. In this chapter a mounted SA based approach is 

proposed.  

Second section of this chapter introduces the measurement and data processing 

techniques for these SA based approaches. They include measurement of wave 

propagation characteristic, data analysis and measurement error analysis. To compare 

the three SA based approaches they are presented and applied for characterisation of 

concrete specimens in the third section. 

3.2 Measurement and data processing  

In this study, the second generation of SAs were used and designed by sandwiching a 

waterproofed PZT patch with lead wires between two mating marble blocks to 

protect the fragile piezoelectric patch. The size of the PZT patch is 15 mm × 15 mm, 
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and the thickness is 0.3 mm. The diameter of the SA is 25 mm and the height is 20 

mm (Song et al., 2008). In order to connect to instruments, a Bayonet Neill–

Concelman (BNC) connector is used as shown in Figure 3-1. 

 

Figure 3-1: Fabricated SA with cable and BNC connector 

Throughout this study, the active sensing approach was employed for all 

experiments, which is based on the measurement of propagation of characterises of 

stress waves in concrete. The SA-based measurement setup is shown in Figure 3-2. It 

includes a data acquisition (DAQ) board connected to a PC and SA transducers. An 

SA actuator generates a guided stress wave in a specimen, which is partially received 

by SA sensors. The received wave signals are recorded by the DAQ board connected 

with the PC and the developed LabVIEW software.  

 

 

 

 

 

SA 

BNC Connector 
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Figure 3-2: SA-based measurement system 

The LabVIEW software is used to generate a swept sine wave as an excitation wave 

and to process the signals received by the SA sensors. The frequency range varies 

from 100Hz ─ 150kHz, and the signal swept period and the amplitude of the sine 

waves are set to be 1 s and 10 V, respectively. The primary program used to input the 

guide wave setup and to record received signal was single-channel program with the 

capability to connect two transducers (one actuator and one sensor) (Kong et al., 

2013). The program was upgraded to multi-channel one to connect more transducers 

(i.e. sensors) in one system for more accurate and wide monitoring. The number of 

transducers used in a system highly depends on the DAQ card’s power to generate 

stress waves. Figure 3-3 shows the multi-channel program setup window six sensors. 

PC DAQ 
System 

SA transducers 

SA1 SA2 SA3 SAn 
Specimen 

… 
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Figure 3-3: A view of multi-channel program on LabVIEW software 

The received signals are saved in Technical Data Management Streaming (TDMS) 

format by LabVIEW software. The LabVIEW software is capable of reading the 

TDSM format and plotting the received signal in both time-domain and frequency-

domain. Figure 3-4 shows the program window with the received and plotted signals 

of time domain and frequency domain.  

Sensor 1 Sensor 2 Sensor 3 

Sensor 4 Sensor 5 Sensor 6 
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Figure 3-4: View of LabVIEW software with a run on TDMS file 

3.2.1 Data analysis approach 

Signal processing is one of the very important aspects of concrete health 

monitoring. There are various kinds of signal-processing approaches, such as Fourier 

transform, Hilbert–Huang transform, and wavelet analysis, among others. The 

wavelet analysis approach is a useful signal-processing tool and successfully applied 

by researchers for structural health monitoring and can be viewed as an extension of 

the traditional Fourier transform. One major advantage of the wavelet analysis is the 

ability to perform local analysis (Gu, 2007).   

In this study, power spectral density (PSD) is calculated using four periods of swept 

sine-wave in order to obtain better accuracy. PSD describes the distribution of the 

power contained in a received signal over a certain frequency range. In addition, in 

this study the maximum of PSD (peak of PSD) and corresponding resonant 

Time-domain 

Frequency-domain 
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frequency was used for comparison purpose when material properties changed as 

shown in Figure 3-5. 

 

Figure 3-5: Frequency-domain received signal 

If the peak PSD is not outstanding, rather a number of frequencies share the received 

power. Therefore, in this study the total received power is introduced as an 

alternative method for analysis and comparison. The following formula presents the 

total received power calculated in the frequency range of 50Hz to 150kHz, as given 

by Equation 3-1 (Chung et al., 2014): 

்ܲ = ∑ )ܦܵܲ ௜݂) × ௜݂
ଵହ଴௞
௜ୀହ଴        (3-1) 

where i represent the frequency number. 

In order to evaluate damage in concrete-based structures, various kinds of damage 

indices have been developed in recent years. Root-mean-square deviation (RMSD) is 

a suitable damage index to compare the difference between the signatures of the 

healthy state and the damaged state (Soh et al., 2000). In this thesis, a damage index 

Peak of PSD 

Resonant 
Frequency 
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is formulated by calculating the RMSD between the energy vectors of the healthy 

state and the damage state. 

The energy vector for the healthy data is ܧ௛ (where h is healthy stage or zero 

time index). The energy vector for the healthy data is ܧ௛ (where E is total received 

energy by sensor and h is healthy stage or zero time index). The energy vector Ei for 

the damage status at time index i is defined as ܧ௜. The damage index at time index i 

and frequency band index j are defined as (Moslehy et al., 2010); 

ܫ = ඨ
∑ ൫ா೔,ೕିா೓,ೕ൯

మ೙
ೕసభ

∑ ா೓,ೕ
మ೙

ೕసభ
        (3-2) 

The proposed damage index represents the transmission energy loss caused by 

structural damage. When the damage index is close to 0, it means the structure is in a 

healthy state. When the damage index is greater than a certain threshold, it means 

damage has appeared. In this case, the greater the index, is the more serious the 

damage. When the damage index is very close to 1, it means the concrete structure is 

near failure. 

3.2.2 Measurement error analysis 

Measurement error analysis is very important for characterisation of concrete 

specimen. Measurement errors may be classified as either random or systematic, 

depending on how the measurement was obtained, as an instrument could cause a 

random error in one situation and a systematic error in another (Taylor, 1997).  

Random errors are statistical fluctuations (in either direction) in measured data due to 

the precision limitations of measurement devices. Random errors can be evaluated 
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through statistical analysis and can be reduced by averaging over a large number of 

observations (Taylor, 1997).  Systematic errors are reproducible inaccuracies that are 

consistently in the same direction. These errors are difficult to detect and cannot be 

analysed statistically. If a systematic error is identified when calibrating against a 

standard, applying a correction or correction factor to compensate for the effect can 

reduce the bias. Unlike random errors, systematic errors cannot be detected or 

reduced by increasing the number of observations. The easiest estimate of the 

systematic error is the average, or mean, of N independent measurements (x1, x2,…, 

xN): 

ݔ̅(݁݃ܽݎ݁ݒܣ) =
௫భା௫మା⋯ା௫ಿ

ே
        (3-3) 

This average is the best available estimate of the results, but it is certainly not exact 

unless there are infinite measurements. Standard deviation is the most common way 

to characterize the spread of a data set. The standard deviation is always slightly 

greater than the average or average deviation, and is used because of its association 

with the normal distribution that is frequently encountered in statistical analyses. So 

we can write out the formula for the standard deviation as the following equation 

(Taylor, 1997): 

ܦܵ = ට(ఋ௫భ
మାఋ௫మ

మା⋯ାఋ௫ಿ
మ

(ேିଵ)
= ට

∑ ఋ௫೔
మ

(ேିଵ)
      (3-4) 

where the N measurements be called x1, x2, ..., xN and each deviation is given by 

௜ݔߜ = ௜ݔ −  .for i = 1, 2, ..., N ,ݔ̅

The "N-1" term in the above equation represents the degrees of freedom. 

Loosely interpreted, the term "degrees of freedom" indicates how much freedom or 
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independence there is within a group of numbers. The degrees of freedom have been 

limited by 1 and only N-1 degrees of freedom remain. In the standard deviation 

formula, the degrees of freedom are N minus 1 because the mean of the data has 

already been calculated (which imposes one condition or restriction on the data set). 

Another statistical term that is related to the distribution is the variance, 

which is the standard deviation squared (variance = SD²). The standard deviation 

may be either positive or negative in value because it is calculated as a square root, 

which can be either positive or negative. By squaring the standard deviation, the 

problem of signs is eliminated. One common application of the variance is its use in 

the F-test (variance analysing test) to compare the variance of two methods and 

determine whether there is a statistically significant difference in the imprecision 

between the methods. 

In this study, the standard deviation is selected because it is expressed in the 

same concentration units as the data. Using the standard deviation, it is possible to 

predict the range of control values that should be observed if the method remains 

stable. 

Designing a sensory system requires careful consideration of the limitations 

imposed by the construction, operating conditions, and medium. Some of the factors 

influencing the accuracy of the system are intrinsic to a specific design. Several 

researchers have examined the mechanisms that cause errors in ultrasonic ranging, 

and the principal mechanisms are included of variations in boundary conditions, 

sensors misalignment, time accuracy of electronic signals for wave generation and 

signal processing, and signal detection. The above variations in boundary conditions 
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have been considered mostly in composite structures due to concrete abutment with 

steel.  

Johnson and Truman (2004) utilized a damage detection procedure using 

unconstrained, nonlinear optimization. The method detected damage in two 

dimensional beam-element frame models through the use of sequential quadratic 

programming. An objective function was created by again using the error in the 

measured displacements of the actual structure and that of a mathematical model of 

the structure. 

Hajela and Soeiro (1990) used a static based identification method that used 

the output error approach. Again, an optimization routine was used to minimize the 

error between measured displacements of a structure and calculated analytical 

displacements, the difference of this method lied in the loading procedure. When 

loads are applied to a structure the various displacements at each degree of freedom 

can be of different magnitudes. As a result, elements will experience different levels 

of stress. To avoid this complication, Hajela and Soeiro (1990) performed the output 

error method using an equal stress loading condition. The equal stress loading 

condition is calculated by first applying a unit load at each degree of freedom and 

observing the resulting stress in each member. 

3.3 Specimens and arrangement of SAs 

Two arrangements of SAs transducers have been used for detection of defects or 

monitoring of material characterisation. These arrangements are as follows: 

1. Embedded SA transducers;  

2. Embedded SA and mounted SA transducers. 
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In this study, the following new arrangement has been proposed and applied for 

detection and monitoring of cracks on concrete and reinforced concrete specimens 

under loading: 

 Mounted SA transducers (actuator and sensors). 

For all these arrangements calibration and/or selection of SA transducers are 

required. A novel method of calibration will be presented in the next sub-section. 

3.3.1 Embedded SA transducers 

The SA embedded transducers can be used for both detection of defects or 

monitoring of material characterisation. In the SAs-based active sensing system, one 

SA is used as an actuator to generate certain excitation waves; the other SAs are used 

as sensors to detect the response. For material characterisation and detection of 

defect such as crack two similar setups are used as shown on Figure 3-6a, and Figure 

3-6b, respectively. Each setup includes a specimen with two embedded SAs at the 

distance (d), a personal computer (PC) and a DAQ card. The energy of the 

propagation waves is attenuated due to the existence of defect/crack. The drop value 

of the transmission energy is correlated with the severe degree of defect/crack inside 

the specimen. 
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(a) 

 

(b) 

Figure 3-6: Schematic of the embedded SAs setup and its received signal in time-

domain for a) material characterisation and b) detection and evaluation of defect 

In this study, the SA-loaded method is proposed and applied for calibration or 

selection of SAs (Figure 3-7). Criterion for this calibration/selection method is the 

highest amplitude of received signal in time domain for each couple of transducers. 
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The frequency, signal swept period and amplitude of the sine waves were set to be 70 

kHz, 1 s and of 10 V, respectively.    

 

Figure 3-7: Picture showing calibration of SAs using the proposed SA-loaded 

approach 

Fifteen SAs were selected for this study using the proposed approach. The SAs were 

tested by bonding each surface and the results recorded for each couple. Then from 

the recorded results SAs were selected based on highest and similar amplitude. Table 

3-1 shows the SAs which selected using this approach. It can be seen from Table 3-1 

that the maximum amplitude variation is from 0.4 to 0.46.  

Table 3-1: Results of calibration of SAs using the constant load 

Sensor 
Number 

Max Received 
Amplitude 

Actuator 
Number 

Max Received 
Amplitude 

Sensor 
Number 

34 0.46 43 0.4 35 
48 0.42 36 0.4 26 
38 0.42 42 0.45 47 
40 0.45 37 - - 
44 0.42 33 - - 
39 0.41 25 - - 

  

In order to investigate the performance of embedded SAs for the detection of cracks, 

two concrete specimens were attached from the side. The surface of each specimen 

SA2 

SA1 

Constant Load 
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was carefully polished before each test to achieve maximum bonding. Three SAs 

were used in this investigation, one as a sensor and two as both the sensor and 

actuator. Figure 3-8 shows a schematic view of specimens with embedded SAs. 

When two specimens were connected from the small side, there was no gap and the 

signal was saved in time-domain. In the next step, a small gap was created between 

specimens using a sheet of paper to simulate the cracks on concrete. The LabVIEW 

program for frequency range, signal swept period and amplitude of the sine waves 

were set to be 150 Hz -150 kHz, 1 s and of 10 V, respectively.  

 

Figure 3-8: Schematic position of specimens and embedded SAs 

The results show the signal, which propagated from one specimen, partially was 

received on the other specimen successfully. Total received power, peak of PSD, and 

peak of amplitude of the recorded signal are presented on Table 3-2. Table 3-2 shows 

that energy of the propagation waves attenuated due to the existence of a gap. The 

reduction in value of total received power, peak of PSD, and peak of amplitude 

confirms this observation. For example, total received power value between actuator 

1 and sensor 1 from 0.38 dBm dropped to 0.249 dBm when a gap occurred.  
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Table 3-2: Measurement results of specimens with gap  

Specimens 

Total 
Received 

Power 
(dBm) 

∆ 
Peak of 

PSD 
(nV2/Hz) 

∆ 
Max of 

Amplitude 
∆ 

AC1-SE1 0.38 
-0.131 

0.473 
-0.269 

0.006 
-0.002 

AC1-SE1+Gap 0.249 0.204 0.004 
AC1-SE2 0.192 

-0.022 
0.108 

-0.026 
0.0035 

-0.003 
AC1-SE2+Gap 0.17 0.082 0.0032 

AC2-SE1 0.158 
-0.044 

0.075 
-0.025 

0.0038 
-0.002 

AC1-SE1+Gap 0.114 0.050 0.0036 

 

3.3.2 Embedded and mounted SAs 

Sensory systems with an embedded SA actuator and mounted SA sensors can 

be used for detecting of defects in concrete materials and mapping of stress wave 

intensity distribution in concrete specimens. This system is very sensitive to the 

location of sensors at the surface of specimens, and hence the use of sensors in the 

right location is important. To investigate the impact of the location of SA sensors, 

the specimen with an embedded SA actuator and loaded external SA sensor was 

prepared and used. The measurements were conducted at each point shown in Figure 

3-9. 

The results of these measurements are presented in Table 3-3. The LabVIEW 

program for frequency range, signal swept period and amplitude of the sine waves 

were set to 150 Hz -150 kHz, 1 s and of 10 V, respectively.  
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Figure 3-9: concrete specimen with nominates locations for measurement shown in 

(a) schematic plan view and (b) during measurement 

The results listed in the table reveal that when a sensor is in same cross section with 

an embedded actuator the received signals significantly increase. For example, the 

peak of PSD value received by the sensor in point 1 is 6.3 nV2/Hz, while in point 2 is 

0.72 nV2/Hz. For better comparison, the results are plotted and shown in Figure 3-10. 

Similar observations can be drawn from the figure, such as the number 1 and 6 which 

are in same cross section where the actuator received the highest signal. The signal in 

other coordination also received some variation. In conclusion, although this system 

transmitted signal was successful received by the external SA, the variation of the 

received signal is an issue for detection and evaluation of defects. 
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Table 3-3: Results of specimens with external SA  

Recorded number 
Specimen 

Peak of PSD 
(nV2/Hz) 

Peak of 
Amplitude 

1 SC2C 6.3 0.034 
2 SC2C 0.72 0.007 
3 SC2C 0.86 0.008 
4 SC2C 0.66 0.007 
5 SC2C 0.51 0.006 
6 SC2C 5.11 0.018 
7 SC2C 0.49 0.006 
8 SC2C 1.59 0.011 
9 SC2C 0.39 0.005 
10 SC2C 0.86 0.007 
11 SC2C 1.30 0.01 
12 SC2C 2.22 0.011 
13 SC2C 0.77 0.008 
14 SC2C 3.21 0.014 
15 SC2C 0.74 0.007 
16 SC2C 0.42 0.006 
17 SC2C 0.27 0.004 
18 SC2C 0.92 0.008 

 

 

Figure 3-10: Variation of peak of PSD for different points on surface of specimen 
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3.3.3 Mounted SAs 

As mentioned, in the study the mounted SA arrangement has been proposed 

using mounted transducers. To demonstrate feasibility of this approach, the 

preliminary investigation into detection of gap and crack in concrete material was 

performed. The investigation process was consisting of two parts: 1) detection of gap 

and 2) detection of crack in concrete. The application of this arrangement was 

verified with concrete specimen similar to one used in previous investigation. 

The small gap between two concrete specimens can mimic a crack with a 

wide width. In order to detect the gap between two concrete specimens using the 

external SAs, firstly SAs were tested on one specimen without any gap with different 

distances. Following this, the selected couple of SAs were tested on two specimens 

with the gap (Figure 3-11). The SAs distances were set to be 20 mm and 40 mm and 

the results in time-domain and frequency-domain have been recorded and presented 

on Table 3-4. Both concrete specimens were casted from a concrete mix at same 

time. The surface of each specimen carefully polished before test to achieve to 

maximum connection between the specimens. LabVIEW program for frequency 

range, signal swept period and amplitude of the sine waves, was set to be 150 Hz -

150 kHz, 1 s and of 10 V, respectively.  
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Figure 3-11: Concrete specimens with mounted SAs 

Table 3-4 shows the results of this experiment. The main observation which can be 

making from Table 3-4 is that the gap was successfully detected by mounted SAs 

due to reduction the value of total received power, peak of PSD and peak of 

amplitude.  

Table 3-4: Results for specimens with gap  

Specimen 
Total received 
power (dBm) 

Peak of PSD 
(nV2/Hz) 

Peak of 
Amplitude 

AC-SE-20mm 1.25 1.35 0.0112 
AC-SE-20mm-Gap 0.44 0.60 0.0075 

AC-SE-40mm 0.81 0.70 0.009 
AC-SE-40mm-Gap 0.29 0.25 0.0062 

 

For detection of crack using mounted SAs, a concrete specimen with a natural tiny 

crack was used (Figure 3-12). Firstly, SAs were mounted on the parts of concrete 

without a crack, which were healthy concrete. Secondly, the SAs were mounted on 

the cracked area and the received signal in time domain and frequency domain were 

Sensor 

Actuator Gap 
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recorded. Figure 3-13 shows a schematic view of specimen with location of mounted 

SAs. LabVIEW program for frequency range, signal swept period and amplitude of 

the sine waves were set to be 150 Hz -150 kHz, 1 s and of 10 V, respectively.  Table 

3-5 presents the calculations of the received signal peak of amplitude, peak of PSD, 

and total received power. 

 

Figure 3-12: Concrete specimen with crack and SAs 

 

Figure 3-13: Schematic of SAs location on surface of concrete specimen 

 

Table 3-5 shows that three recorded signals in healthy area shows their values 

of peak of amplitude, peak of PSD and total received power were very similar. This 
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means the field distribution of mounted SAs received the same signal, contrary to the 

previous section in which the received signal varied.  

A comparison between the results of the recorded signal in healthy and 

cracked areas of concrete shows the significantly decreased received signal in the 

cracked area, due to the crack. Therefore, the mounted SAs successfully detected 

cracks in concrete specimen. 

Table 3-5: Results for specimens with and without crack 

Specimen 
Total received 
power (dBm) 

Peak of PSD 
(nV2/Hz) 

Peak of 
Amplitude 

32A2-31S1-1 1.32 3 0.013 
32A2-31S1-2 1.57 3.8 0.015 
32A2-31S1-3 1.48 3.21 0.017 

32A2-31S1-Crack1 0.083 0.18 0.005 
32A2-31S1-Crack2 0.061 0.13 0.003 
32A2-31S1-Crack3 0.073 0.12 0.006 

 

3.4 Boundary condition effect on wave propagation in specimen 

There is an increasing demand in composite structures in many applications. 

Composite concrete-steel structures have been widely used. It is expected that when 

using mounted SA transducers and active sensing approach, steel material on 

concrete boundary can affect the wave propagation inside the concrete. Therefore, in 

this section the effect of steel plate on the propagation of stress wave in a concrete 

specimen is investigated. 

Nine concrete specimens with three set of embedded SAs (50, 100 and 150 mm 

distances) have been used in this investigation. For comparison, specimens were 

tested using a plywood sheet and then a steel plate (Figure 3-14). LabVIEW program 
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for frequency range, signal swept period and amplitude of the sine waves were set to 

be 150 Hz -150 kHz, 1 s and of 10 V, respectively.  

 

Figure 3-14: Specimen with (a) plywood sheet and (b) metal plate 

The SAs (i.e., SA actuator and SA sensor) were embedded in each specimen at the 

separation distance of 50, 100 and 150 mm. Therefore, the results of boundary 

condition were investigated in three groups. The first group included the results for 

the specimens with 50 mm distances between SAs, and the second and third group 

are including the results for the specimens with 100 and 150 mm distances, 

respectively (Table 3-6 to Table 3-8). 

Table 3-6: Results for specimens with 50-mm distance between SAs  

Specimen 
Total received 
power (dBm) 

∆ Peak of PSD 
(nv2/Hz) 

∆ Peak of 
Amplitude 

SC1- Wood 88.13 
+0.32 

42.5 
+0.5 

0.052 
SC1-Metal 88.45 43 0.055 
SC2- Wood 143.96 

+0.41 
88.1 

+3.4 
0.076 

SC2- Metal 144.37 91.5 0.078 
SC3- Wood 79.87 

+0.06 
38.3 

+1.4 
0.048 

SC3- Metal 79.93 39.7 0.053 
 

 

 

(a) (b) Plywood sheet Steel plate 
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Table 3-7: Results for specimens with 100-mm distance between SAs 

Specimen 
Total received 
power (dBm) 

∆ Peak of PSD 
(nv2/Hz) 

∆ Peak of 
Amplitude 

SC1- Wood 74.84 
+0.02 

43.1 
+2 

0.05 
SC1- Metal 74.86 45.1 0.05 
SC2- Wood 109.04 

+1.36 
46.5 

+0.7 
0.052 

SC2- Metal 110.4 47.2 0.054 
SC3- Wood 48.61 

+0.02 
32 

+0.5 
0.04 

SC3- Metal 48.63 32.5 0.042 
 

Table 3-8: Results for specimens with 150-mm distance between SAs 

Specimen 
Total received 
power (dBm) 

∆ Peak of PSD 
(nv2/Hz) 

∆ Peak of 
Amplitude 

SC1-Wood 61.72 
+0.43 

24 
+0.01 

0.038 
SC1- Metal 62.15 24.1 0.038 
SC2- Wood 53.39 

+1.2 
27.6 

+2.9 
0.04 

SC2- Metal 54.59 30.5 0.042 
SC3- Wood 26.86 

+0.31 
13.9 

+1.3 
0.03 

SC3- Metal 27.17 15.2 0.031 
 

The results show that the presence of steel plate slightly increases the total received 

power, peak of PSD, and peak of amplitude in concrete specimens compared to the 

influence of the plywood sheet. This increase is more obvious when there is a 150-

mm distance between SAs which can be correlated to increasing the length of 

interaction between stress waves in concrete with a steel boundary. This effect 

should be considered when plan and set experiments based on propagation stress 

waves in concrete specimens and structures.  

3.5 Summary 

This chapter introduced the SA based systems with three SA arrangement approaches 

along with the active sensing method for experimental investigation of concrete 

members. It is shown that the received signals in time-domain and frequency-domain 
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do not solely provide adequate information about a status of concrete member with 

respect to quality of concrete and integrity of the member. Therefore, power spectral 

density (PSD), total received power, and damage indexes were presented as useful 

data analysis tools for health monitoring of concrete members.  

Systematic experimental investigation into capability of the SA based arrangements 

was performed and the following concluding remarks can be made: 

1. It is shown that embedded SAs are able to provide the detection of gap in concrete 

based specimens. However, they could apply for detection and evaluation of crack in 

new structures while it is not applicable for existing structure. In addition, location of 

the embedded SAs cannot be changed. On the other hand, it is well known that they 

are very sensitive to changes of concrete and can be used for its characterisation. 

This advantage will be used in Chapter 4 for characterisation of early-age concrete. 

2. A combination of embedded and mounted SA transducers can overcome some 

limitations of the embedded SA transducers. The investigation with an embedded SA 

actuator and mounted SA sensor performed in this this chapter showed that ability of 

this arrangement to change location of the mounted SA sensor on the surface of 

concrete specimen provided opportunity to measure stress wave field distribution and 

to optimize the location of SA sensor. 

3. The proposed mounted SA based approach has demonstrated ability to detect 

cracks in concrete members. In this case location of any SA transducers on the 

surface of concrete members can be changed and optimized. This approach will be 

applied for detection and monitoring of cracks in concrete and reinforced concrete 

beams under loading. 
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Preliminary investigation into the effect of boundary condition on the received signal 

in concrete specimen has also been performed. It was shown that the presence of a 

steel plate as a part of concrete-steel composite slightly increase the total received 

power, peak of PSD and peak of amplitude of the received signal.  
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Chapter 4 : Early-Age Concrete Hydration 
Characterization Using Embedded Smart Aggregates 

 

4.1 Introduction 

One of the major variables influencing the performance of cementitious 

materials is their water-to-cement ratio (w/c). The w/c directly controls the volume of 

water available for hydration per unit volume of cement and establishes the initial 

spacing between cement particles. It also  influences a wide variety of early-age 

concrete properties such as setting time, semi-adiabatic temperature rise, and 

autogenous shrinkage (Gu, 2007). The latter two variables can potentially be major 

contributors to early-age cracking of cement-based materials (Gilbert and Ranzi, 

2010). The predesigned w/c ratio generally can be affected by natural aggregates 

saturation ratio, weather condition or transportation. It is very common that the w/c 

ratio and consequently slump test results in the field are slightly different than 

theoretical design requirements.  Therefore, the determination of initial w/c ratio is 

one of the challenging tasks and non-destructive methods with high accuracy are 

desired for this purpose (Kong et al., 2013). 

Previous investigations showed a successful application of SA transducers for 

early-age concrete health monitoring (Dumoulin et al., 2012, Kong et al., 2013). 

However, feasibility of determination of the initial w/c ratio by these transducers has 

not been investigated yet. In this study, the hydration process of concrete specimens 

with different w/c ratios are investigated using embedded SAs. The transmission 

properties of stress wave are analysed and experimental compressive strength test is 

conducted for verification. As mentioned in Chapter 2, the area of sensing covered 
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by transducers was a challenge in application of embedded SA transducers and a 

potential of its increasing is investigated in this chapter through experimental test.   

In this chapter, embedded SAs are used as actuator and sensors for the very 

early-age (0-20 hours) and early-age (0-8 days) concrete hydration characterisation. 

The second section describes the concrete mixture design, slump and compressive 

strength test procedure and results. The third section presents the transducers 

arrangements in moulds, their testing in water and the preparation of concrete 

specimens with the SAs. The forth section presents the results and discussion of 

measurement of concrete specimens with three values of w/c ratio and three 

distances between embedded SA transducers. 

4.2 Concrete mixture and relevant general tests 

4.2.1 Concrete mix design 

In this investigation, several specimens have been prepared and the results for 

three batches of cement concrete fabrication are presented. Mixture was designed 

with w/c = 0.5 using the method recommended by ACI Committee 211 (ACI, 1991) 

for specimen SC2 referred to as a standard-based mix design. Other two concrete 

mixtures were prepared by simply reducing and increasing amount of water in 

weight to obtain w/c ratios of 0.45 and 0.55, and specimens SC1 and SC3, 

respectively, were made.  

Locally available natural river gravel (coarse aggregate), natural river sand 

(fine aggregate), Australian Portland cement type GB and tap water were used in 

preparing the concrete mixture. The materials were tested to determine the physical 

properties required for mixture proportioning of concrete (Table 4-1). 
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Table 4-1: Material Properties used in concrete mixture 
Materials Property 
Portland cement type GB Specific gravity:  3.15 
Natural river sand (Fine aggregate) Specific gravity:  2.55 
 Size:  0.15 to 4.75 mm 

Natural river gravel (Coarse aggregate) 
Specific gravity:  2.60 

Density: 1600 
௞௚

௠య 

 Maximum size: 20 mm 
Tap water Density:  998 ~ 1000 kg/m3 
 

In this research concrete mixing was designed based on the given w/c ratio. To 

prepare mixture for conventional concrete specimen the total weight per volume (U) 

can be defined as (ACI, 1991): 

ܷ = ܣܨ + ܣܥ + ܹ +  (1-4)      ܥ

where FA, CA, W and C are the weight of fine aggregate, coarse aggregate, water 

and cement, respectively.  

The total weight per volume of fresh concrete ( ௙ܷ) was obtained from: 

௙ܷ = ௔(100ܩ10 − (ܣ + ܥ ቀ1 −
ீೌ

ீ೎
ቁ − W(ܩ௔ − 1)   (4-2) 

௔ܩ = ஼஺ܩ)1/2 +  ி஺)      (4-3)ܩ

where ܩ௔ is the weighted average specific gravity of combined fine and coarse 

aggregate and ܩ௖ and A are the specific gravity of cement and percentage of air 

content, respectively. 

Amount of water, coarse aggregate, fine aggregate and cement for 1m3 were 

calculated and the results are shown in Table 4-2. 
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From Table 4.1 the specific gravity of sand, gravel and cement are 2.55, 2.60 and 

3.15, respectively. Then the weighted average specific gravity (ܩ௔) can be calculated 

from Equation 4-3 as follows; 

௔ܩ =  
ଵ

ଶ(ଶ.଺଴ାଶ.ହହ)
= 2.575  

Table 4-2: Concrete mixing design for 1m3 
Mixture w/c  Cement (kg) Water (kg) Sand (kg) Gravel (kg) 
SC1-1 0.45 410 184.5 644.7 992 
SC2-1 0.5 410 205 644.7 992 
SC3-1 0.55 410 225.5 644.7 992 

 

The constituent materials were batched by weight and mixed in a drum-type-mixer 

for about six minutes. The batch volume was calculated taking the quantity of fresh 

concrete at least 20% more than the required in order to compensate the loss during 

mixing, sampling and testing of slump.  

4.2.2  Slump test 

The consistency and uniformity of fresh concrete are described by the term 

“slump.” The slump of a given sample of ready-mixed concrete is measured in 

inches or millimetre and is determined by means of the universally accepted testing 

procedure described by ASTM designation C-143 (C143, 2004). A slump test is used 

to determine the correct hydration of a batch of concrete and directly depends on its 

w/c ratio.  

Slump tests were performed by placing the fresh concrete into a metal mould 

in the shape of a cone. This slump cone was 203 mm in diameter at the bottom, 102 

mm in diameter at the top, 305 mm in height, and open at both ends. The mould 

provided with foot pieces and handles, and tests were performed on a flat, rigid, non-
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absorbent surface (Figure 4-1a). The tamping rod was used to consolidate the sample 

a round. The cone held firmly in place during filling by the operator standing on the 

two-foot pieces. By using a small shovel or scoop the cone filled 1/3 full by volume 

with fresh concrete and rod 25 times with the tamping rod. Distribute rodding strokes 

evenly over the entire cross section of the concrete. Each stroke penetrates the entire 

depth of this first layer. Immediately the cone filled another 1/3 by volume (to about 

half the height) and again rod 25 times. The rod to passes through this second layer 

of concrete and penetrates about 13 mm into the underlying layer. Finally, the cone 

filled to overflowing and again rod 25 times following the previous procedure. Strike 

off excess concrete from the top of the cone by means of a screeding motion of the 

tamping rod. After cleaning the overflow away from the base of the mould, removed 

the mould by raising it carefully in a vertical direction. The removal process 

performed in 5 ± 2 seconds. Finally, determine the slump of the concrete by simply 

placing the tamping rod horizontally across the inverted mould so the rod extends 

over the slumped concrete, immediately measured the distance from the bottom of 

the rod to the original centre of the top of the specimen (Figure 4-1b). 
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Figure 4-1: Slump test (a) equipment and (b) measurement approach used in this 

investigation 

4.2.3 Determination of compressive strength 

Concrete mixture must be designed to provide a wide range of mechanical 

and durability properties to meet the design requirements of a structure. The 

compressive strength of concrete is the most common performance used by the 

engineer in designing building and other structures. In this investigation, the 

compressive strength is determined by breaking cylindrical concrete specimens in a 

compression testing machine and calculated from the failure load divided by the 

cross-sectional area resisting the load, and reported in units of a pound-force per 

square inch (Psi) or Mega Pascals (MPa). 

The cylinders were tested using the procedure described for standard-cured 

specimens in ASTM C 31 (Standard, 2003). A test result is the average of 

measurement three standard-cured strength specimens made from same concrete 

mixture and tested at the same age. In this research strength requirements for 

concrete were at the age of 7 and 28 days. Each cylindrical specimen has dimensions 

(a) (b) 
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of 150×300 mm or 100×200 mm when specified. Recording the mass of the 

specimen before capping provides useful information in case of disputes. To provide 

a uniform load distribution when testing, the cylinder under test was capped with 

sulphur mortar (ASTM, 2009). 

Figure 4-2 shows photos of number cylindrical (C) concrete specimens made for 7th 

and 28th day compressive strength test. They have diameter of 100 mm and height of 

200 mm. 

 

Figure 4-2: Cylindrical specimens made for 7- and 28-day compressive strength test 

The cylinder diameter measured in two locations at right angles to each other 

at mid-height of the specimen and averaged to calculate the cross-sectional area. The 

cylinder under test was centred in the compression testing machine under uniaxial 

compression and loaded to complete failure (Figure 4-3). The loading rate on a 

hydraulic machine was maintained in a range of 20 to 50 psi/s (0.15 to 0.35 MPa/s) 

during the latter half of the loading phase. The concrete strength was calculated by 

dividing the maximum load at failure by the average cross-sectional area. Three 
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cylinders were tasted for each w/c ratio at same age and the average strength was 

reported as a test result. 

 

Figure 4-3: Compressive strength hydraulic machine testing cylindrical concrete 

specimen: (a) before and (b) after test 

4.3 SA arrangement, testing with water and concrete specimens 

preparation  

4.3.1 SA arrangement and testing with water 

Wooden moulds (300×150×75 mm) have been chosen and SAs fixed in entire 

position. Fresh concrete properties change with time. Hardening of concrete can be 

an issue if recalibration required. So, in this study water used as best homogenous 

material for characterisation of SAs signal before concrete casting. 

For characterisation of SAs signal inside the specimen, the amount of water 

inside the moulds can be affected the transmission propagation of received signal. 

Figure 4-4 shows the mould fill in different levels of water and the signal recorded in 

(a) (b) 

Load 

Specimen 

Cap 
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time-domain and frequency-domain for comparison (Figure 4-5). Frequency range, 

signal swept period and amplitude of the sine waves were set to be 150 Hz -150 kHz, 

1 s and of 10 V, respectively. 

 

Figure 4-4: SAs position inside the mould with different levels of water 
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(b) 

Figure 4-5: Results of SAs with different levels of water for (a) time-domain and (b) 

frequency-domain 

The results show that the signal from the actuator successfully received by 

the sensor and it can be presented in both time-domain and frequency-domain.  The 

results also show that the received signal significantly increased when the mould fill 

more than 45 mm in height, i.e. when water covered SAs. In addition, the highest 

amplitude and peak of PSD value have been received at 55 mm levels of water. 

Therefore, the calibrated SAs on free space are testing inside the mould filled with 

water at 55 mm in height. The results of this investigation are presented in Table 4-3 

to Table 4-5. 

Table 4-3: Characterisation of SAs inside the water at 50 mm distance 

SA number 
Distance 

(mm) 
Total received 
power (dBm) 

Peak of PSD 
(nv2/Hz) 

Peak of 
Amplitude 

47-42A-38 50 12.455 9.28 0.07 
26-36A-48 50 12.813 10.25 0.06 
34-43A-35 50 11.25 8.86 0.054 
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Table 4-4: Characterisation of SAs inside the water at 100 mm distances  

SA number 
Distance 

(mm) 
Total received 
power (dBm) 

Peak of PSD 
(nv2/Hz) 

Peak of 
Amplitude 

47-42A-38 100 4.368 2.12 0.011 
26-36A-48 100 4.89 4.65 0.02 
34-43A-35 100 4.569 3.6 0.012 

 

Table 4-5: Characterisation of SAs inside the water at 150 mm distances  

SA number 
Distance 

(mm) 
Total received 
power (dBm) 

Peak of PSD 
(nv2/Hz) 

Peak of 
Amplitude 

44-33A 150 3.183 1.22 0.015 
40-37A 150 3.697 1.87 0.011 
25-39A 150 3.375 2.8 0.0135 

 

The results show that all the SAs received very similar signal in constant distances. 

The results also show that the highest signal received at the distance of 50 mm. 

Furthermore, the total received power results show less variation in different SAs 

arrangement rather than peak of PSD and peak of amplitude. Thus, testing SA 

arrangement in water confirms the free space calibration. 

4.3.2 Concrete specimens preparation 

Wooden cases were used as moulds to make specimens SC1, SC2 and SC3 

with dimensions of 300×150×75 mm3. In this study two specimens were taken from 

each batch of concrete with different SAs arrangement.  Two or three SAs were 

embedded in each specimen at the separation distance of 150 mm, 50 mm and 100 

mm, respectively (Figure 4-6a). After casting, the materials were vibrated for 

approximately 5 min. the moulds with a freshly cast concrete were covered with 

preservative plastic lids to provide a sound local moisture condition. The fresh 
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concrete specimens were cured under laboratory condition with room temperature of 

22 °C. Once all preliminary specimen treatments were finished (approximately 1 

hour after casting), the piezoelectric monitoring system was activated right away to 

commence the measurement every one hour (Figure 4-6b). 

 

Figure 4-6: Concrete moulds with SAs: (a) before and (b) after casting 

A LabVIEW program has been used to generate the swept sine-wave as the 

excitation wave and to provide signal processing of received signals. Frequency 

range, signal swept period and amplitude of the sine waves were set to be 150 Hz -

150 kHz, 1 s and of 10 V, respectively.  The program recorded every hour after 

casting and saved the data in time-domain format.  

150 
100 50 

Actuator Actuator Sensor Sensor 

(a) 

(b) 
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4.4 Results and discussions 

The results of monitoring of the concrete specimens with SAs were 

categorised in two main groups. The first group investigated the concrete very early-

age (0-20 hours) and early-age (0-8 days) hydration characterisation with different 

w/c ratios, while the second group investigated effect of distance between embedded 

transducer on concrete early-age hydration monitoring. 

4.4.1 Hydration process monitoring  

In this research for verification purpose slump test were taken for SC1, SC2 

and SC3 specimens from the start of the filling through the removal of the mould 

without interruption. The results illustrated at Table 4-6 and as expected, SC1 with 

lower w/c ratio and SC3 with higher w/c ratio show lower and higher slump value, 

respectively. The results also show that ratio value of the slump test result for 

(SC1/SC2) and (SC2/SC3) are 0.55 and 0.52, respectively.  

Table 4-6: The results of slump test  
Mixture SC1 SC2 SC3 

Water-to-cement ratio  0.45 0.5 0.55 

Slump (mm) 55 100 190 

 

The hydration process of the concrete had been monitored for 8 days. 

Utilizing the active-sensing approach, the sensor SA continuously received the 

propagated wave signal transmitted from the actuator SA. Figure 4-7 depicts the 

received time-domain signals from the sensor embedded in SC2 specimens with 50 

mm distance every 5 hours after casting. Each plot corresponds to only one cycle of 



  

 
 89   

 

the detected signal, in the level of millivolts, from repeated swept sine wave. During 

first 5 hours, no received signal was detected for all specimens. After 5 hours, the 

figures show time-domain signals amplitudes in many different frequencies are 

growing with hydration time.  From each plot, resonance peaks can be observed 

when hydration time increases. However, comparison between figures clearly shows 

changes of the received signal for each specimen, which can be correlated to changes 

of the specimens physical properties. 
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Figure 4-7: Received time-domain signals from the embedded sensor every 5 hours 

after casting for SC2 specimen with 50 mm distance 

The results of time-domain received signal reveal that during concrete hydration the 

propagation properties of stress waves in concrete were changed. The results of this 

investigation confirm these changes and provide more information about monitoring 

of concrete hydration process using power spectral density (PSD).  
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Figure 4-8 shows the PSD plots (frequency-domain) for the corresponding time-

domain signals shown in Figure 4-7. These frequency-domain power signals also 

display the maximum peak of PSD value for comparison.  All PSDs are calculated 

using four periods of swept sine-wave in order to obtain a better accuracy. 
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Figure 4-8: Power Spectral Density (PSD) of from the embedded sensor every 5 

hours after casting for SC2 specimen with 50 mm distance 
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The test results in frequency-domain clearly show the changing in received 

signal versus concrete hydration. Furthermore, the maximum peak of PSD increases 

versus hydration process of concrete which means increases with concrete hardening 

process. The peak of PSD value after 5 hours is close to 1.42 V2/Hz, while after 30 

hours it is close to 10.3 V2/Hz. Similar observations could be seen from other 

specimens during the hydration process (Figure 4-9). 

Figure 4-8 also shows that the resonant frequency after 10 hours was close to 80 kHz 

while after 30 hours it increases to 120 kHz. To emphasise Figure 4-9 shows that the 

resonant frequency increases in first hours of measurement in all distances and then 

become more constant with small variations. This increase of the resonant frequency 

is probably caused by the increasing stiffness of the host structure.  

The SC2 specimens with 0.5 w/c ratio show the highest resonant frequency in first 

hours while SC3 with 0.55 w/c ratio shows the lowest one. As Figure 4-9b shows for 

100 mm distance; the highest resonate frequency received on the SC2 at the first 

hours, while the lowest resonate frequency in SC3. This observation is more obvious 

for 150 mm distance as shown in Figure 4-9c. 

 
(a) 
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(b) 

 
(c) 

Figure 4-9: Resonant frequencies of all specimens versus hours for (a) 50 mm, (b) 

100 mm and (c) 150 mm distance 

For future investigation and analysis, the PSD results on LabVIEW program 

were exported to MATLAB program. The results of monitoring of the amplitude of 

peak of PSD were obtained using MATLAB code and shown in Figure 4-10 and 

Figure 4-11 for 50, 100 and 150 mm distance for very early-age and early-age 

concrete, respectively.  
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(a) 

 

(b) 

 

(c) 

Figure 4-10: Peak of PSDs of received signal at the distances of a) 50 mm b) 100 mm 
and c) 150 mm during first 20 hours. 
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(a) 

 

(b) 

 

(c) 

Figure 4-11: Peak of PSDs of received signal versus times at the distances of a) 50 
mm b) 100 mm and c) 150 mm during first 8 days 
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Several observations can be made from above figures as follows: 

The results very early age concrete plotted in Figure 4-10 show that the peak of PSD 

value significantly increases during concrete hydration process in first 20 hours. In 

Figure 4-10a the peak of PSD value for specimen SC2 after around 5.30 hours is 

close to 0.013 V2/Hz, while after 20 hours it is close to 7.3 V2/Hz. Same observation 

can be taken for other specimens with different distances between transducers. 

As the Figure 4-10a results for 50 mm distance shows the first signal received by 

specimens SC1, SC2 and SC3 were at around 8.30, 5.30 and 9.30 hours after casting, 

respectively. These results in Figure 4-10b with 100 mm distance were at around 

9.30, 8.30 and 11.30, respectively. While in Figure 4-10c for 150 mm distance was at 

round 7.30, 7.30 and 12.30, respectively. Therefore at all distances, the SC2 

specimens received the first signal among others, which means it has faster hydration 

process which could lead to highest compressive strength. 

A comparison between Figures 4-8 a, b and c shows that the amplitude of peak of 

PSD significantly decreases with increasing the distance between transducers. The 

maximum peak of PSD for specimen SC2 in Figure 4-10a is close to 7.3 V2/Hz, 

while in Figure 4-10b and Figure 4-10c is close to 1.5 V2/Hz and 0.82 V2/Hz, 

respectively. 

The results of early-age concrete plotted in Figure 4-11 show that the peak of PSD 

value increases during concrete hydration process after 1st day with less slope to very 

early-age concrete. The SC2 specimen with 0.5 w/c ratio still shows the highest peak 

of PSD to other specimens in all distances. For example, Figure 4-11a shows that the 
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peak of PSD value for specimen SC2 is close to 21.6 V2/Hz, while for SC1 and SC3 

are close to 15.3 V2/Hz and 5.8 V2/Hz, respectively. 

In summary, the specimens SC2 which represented the standard-based concrete with 

0.5 w/c ratio shows highest peak of PSD value in all distances between transducers. 

In addition, the first signal received by SC2 specimens due to faster hydration 

process which could lead to highest compressive strength.  

The previous investigations show that the peak PSD is not outstanding, rather 

a number of frequencies share the received power. Therefore, this has motivated us 

to use an alternative method of total received power introduced in chapter 3 to 

monitor and gauge the hydration process.  Figure 4-12 to Figure 4-13 shows the 

calculated total power received by the sensor versus number of hours. As expected, 

the growth of total power of frequencies increased more linear and more obvious 

than the use of peak PSD.  
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(a) 

 

(b) 

 

(c) 

Figure 4-12: Total power received of received signal at the distances of a) 50 mm b) 
100 mm and c) 150 mm during first 20 hours. 
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(a) 

 

(b) 

 

(c) 

Figure 4-13: Total power received of received signal at the distances of a) 50 mm b) 
100 mm and c) 150 mm during first 8 days 
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Several observations can be made from Figure 4-12 and Figure 4-13.  

The results of very early-age concrete plotted in Figure 4-12 show that the total 

received power value significantly increases during concrete hydration process in 

first 20 hours. In Figure 4-12a the total received power value for specimen SC2 after 

around 5.30 hours is close to 0.119 dBm, while after 20 hours it is close to 20.79 

dBm. Same observation can be taken for other specimens with different distances 

between transducer. 

Similar to peak of PSD results for total received power results the SC2 specimens 

received the first signal due to faster hydration process which could lead to highest 

compressive strength. 

A comparison between Figure 4-12a, b and c shows the peak of PSD significantly 

decreases with increasing the distance between transducers. The maximum total 

received power value for specimen SC2 in Figure 4-12a is close to 20.79 dBm, while 

in Figure 4-12a and Figure 4-12b is close to 5.35 dBm and 1.94 dBm, respectively. 

The results of early-age concrete plotted in Figure 4-13 shows that the total received 

power value increases during concrete hydration process after 1st day with less slope 

to very early-age concrete. The SC2 specimen with 0.5 w/c ratio still shows the 

highest total received power to other specimens in all distances. For example, Figure 

4-12a shows the total received power value for specimen SC2 is close to 54.37 dBm, 

while for SC1 and SC3 are close to 47.19 dBm and 14.97 dBm, respectively. 

In summary, the specimens SC2 which represented the standard-based concrete with 

0.5 w/c ratio shows highest total received power value in all distances between 

transducers. In addition, the first signal received by SC2 specimens due to faster 
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hydration process which could lead to highest compressive strength.  Therefore the 

results of compressive strength required for verification purpose. 

Compressive strength tests were conducted at 7th and 28th days for each w/c ratio. 

The average values compressive strength test results are presented in Table 4.7.  

Table 4-7: Compressive strength test results 
Specimens w/c  CS after7 Days (MPa) CS after 28 Days (MPa) 
SC1 0.45 18.90 29.20 
SC2 0.50 20.60 32.45 
SC3 0.55 13.67 22.37 
 

As the results show the 28 days compressive strength for SC2 specimens meet the 

design requirement compressive strength which was 30 MPa. Furthermore as 

expected the highest compressive strength allocated to SC2 which was the main 

design concrete. SC1 specimens are in second rank while specimen SC3 has the 

lowest compressive strength value due to the highest w/c ratio. Therefore, the 

comparison between compressive strength results and signal processing results 

reveals that SC2 specimen with 0.5 w/c ratio shows highest received signal and 

compressive strength.  

4.4.2 Effect of change of distances between transducers on early-age concrete 

hydration monitoring 

This section investigated the properties of the received signal at different 

distances between the SA sensor and the SA actuator.  
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(a) 

 

(b) 

 

(c) 

Figure 4-14: Peak of PSDs of received signal versus times for a) 0.45 b) 0.50 and c) 
0.55 w/c ratio in first 20 hours 
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As the above figures shows the highest value of peak of PSD is for 50 mm distances 

between embedded SAs. Figure 4-14b shows for 0.5 w/c ratio the maximum peak of 

PSD value for SAs with 50 mm distance is close to 20.4 V2/Hz, while for 100 mm 

and 150 mm distances are close to 1.5 V2/Hz and 0.82 V2/Hz, respectively. 

Furthermore the first signal received by embedded SAs with 50 mm distance, while 

the 100 mm and 150 mm received first signal few hours later. The results also show 

there is significant difference in value of peak of PSD for 50 mm distances in 

comparison to other distances, while the 100 mm and 150 mm shows very similar 

results with slightly difference. In summary, the 50 mm distances between embedded 

SAs shows better performance for monitoring early-age concrete hydration 

characterisation. 

4.5 Summary 

The main purpose of this chapter was hydration process monitoring in concrete 

specimens with different values of w/c ratio and distances between embedded SAs. 

Several moulds were prepared and in some of them two SAs were installed at the 

separation distance of 150 mm and in other moulds three SAs were installed at 

separation distances of 50, 100 and 150 mm. Preliminary measurements were 

conducted with water in these moulds with the SAs. The results of these 

measurements not only confirmed workability of the SAs active system but also 

demonstrated a measurable magnitude of the received signals and the influence of 

water level on the received signal.  

For the preparation of concrete specimens three batches of cement concrete were 

prepared with values of w/c ratio of 0.45, 0.50 and 0.55. In this investigation very 

early-age (0-20 hours) and early-age (1-8 days) concrete hydration successfully 
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monitored using proposed approach. For the first time indication of the received 

signal was observed in around 5.30 hours after casting for concrete with 0.5 w/c ratio 

and 50-mm distance between SAs.  

Based on the experimental results, the following conclusion remarks can be drawn: 

1. The investigation of SAs embedded in water showed that the received signal was 

measurable and its amplitude could be controlled by changing amount of water in 

moulds.  In general, the preliminary measurement in water can be used for selection 

and calibration of SAs before concrete casting. 

2. The result showed that SAs can be successfully applied for very early-age concrete 

hydration monitoring. The peak of PSD and total received power increased with the 

development of hydration process.  

3. The results also showed that the changes of water amount (i.e., initial value of w/c 

ratio) in standard-based concrete mixtures decreased the received signal and 

compressive strength of concrete. 

4. The received signal gradually decreased when the separation distance between SA 

actuator and sensor increased. 

5. The proposed embedded SA based approach can be used for the determination of 

initial w/c ratio and compressive strength of concrete at its early-age stage. 
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Chapter 5 : Detection and Monitoring of Crack in Concrete 
Beams under Bending Using Mounted Smart Aggregates 

 

5.1 Introduction 

The previous chapter has demonstrated the capability of the use of embedded SA 

transducers to monitor concrete structures. As mentioned, embedded SAs must be 

implemented in new concrete structures during their fabrication. In addition, they are 

sensitive to changes of many parameters and it is difficult to distinguish their 

contributions to the changes of stress wave propagation characteristics. If we target 

the detection and monitoring of cracks in concrete members under loading, stress 

wave sensitivity to undesired changes of physical properties of concrete such as 

moisture and shrinkage may mask indication of cracks and/or their changes.  

In this chapter, a mounted SA based active sensing approach is proposed and 

applied for detection and monitoring of cracks in unreinforced concrete beams under 

loading. This approach is different from mounted patch based techniques in terms of 

its relatively easy installation (even after a concrete casting) and the fact that there is 

no need for additional sensor protection. It is also expected that SA housing made of 

marble can provide better impedance matching with concrete than piezoelectric 

patches.  In this study, the proposed technique is experimentally applied for concrete 

beam specimens, on which SAs are mounted, in order to monitor the status of the 

concrete beams under bending and to detect load-induced cracks.  

This chapter has three main sections, with the first section presenting the 

experimental set up for testing concrete beams using three point bending tests. The 
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second section provides details of sensor arrangement on concrete beams based on 

the approach presented in Chapter 3. The last section presents experimental results 

for the 10 concrete beams using recorded signals at both the time domain and the 

frequency domain, and data processing results including the PSD, total received 

power and their standard deviations. The correlation of these results with those 

obtained with load cell and strain gauges is analysed and discussed. 

5.2 Concrete beam preparation and loading setup  

To cast concrete beams, the mix proportion of the ready-mixed concrete was used. 

The design was based on the aggregates with the maximum size of 10 mm, a slump 

of 70 mm, 28 day-compressive strength of 40 MPa, and the water-to-cement ratio of 

0.48. The Australian Portland cement type GB was used, and the concrete and sand 

conformed to AS3600 (2009). All the material properties used in this study are 

summarised in Table 5-1.   

Table 5-1: Properties of materials used in concrete mixture 

Materials Properties Values 

Portland cement type GB Specific gravity 3.15 

Natural river sand (Fine aggregate) 
Specific gravity 2.55 

Size 0.15 to 4.75 mm 

Natural river gravel (Coarse 
aggregate) 

Specific gravity 2.60 

Maximum size 10 mm 

Tap water Density 998 ─ 1000 kg/m3 
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The slum test was taken before the concrete casting to check design requirement 

(Figure 5-1a). 20 standard cylinders were cast with the identical size of 102 mm x 

203 mm (Figure 5-1b). The cylinders were cast and cured under the same 

environmental condition as that of the concrete beams, i.e. cured under moist burlap 

cover for 7 days and in an air-conditioned laboratory until the 3-point bending test 

was carried out. After 7, 14, 28, 56 and 92 days from the casting, the compressive 

strengths were measured for four specimens at each day.   

 

 

Figure 5-1: a) Slump test before casting and b) concrete cylinders after casting 

 

a) A slump Test b)  Concrete Cylinders 
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Figure 5-2: Concrete beam casting and preparation 

Ten concrete beams with the nominally identical size of 400 mm × 100 mm × 100 

mm were tested. The moulds were fabricated using plywood. The specimens were 

vibrated after casting and surface finishing was done by hand floating (Figure 5-2). 

The specimens were tested in the test frame shown in Figure 5-3. The Instron 

universal test machine, with a loading capacity of 200 kN was used, was installed in 

the Structural Laboratory at the Western Sydney University, Australia. The machine 

had high bandwidth DSP (Digital Signal Processing) based electronics and Bluehill 

modular applications software. The machine was equipped with loading cell to 

monitor real-time, and loaded onto a concrete beam specimen with software designed 

to record load change.  
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Figure 5-3: Instron universal test machine 

The machine software was set up based on specimen dimensions, material properties, 

test type, and loading input as shown in Figure 5-4. The loading cell was initialised 

to zero force before the start of loading, after confirming that there was no pressure 

on a specimen. The displacement movement was set to be 0.01 mm/min to ensure 

generally accurate monitoring of the specimens cracking.  



  

 
 111   

 

 

Figure 5-4: Software setup for Instron machine 

A three point bending test was conducted, with the specimens placed on top of two 

pedestals, while a loading pin at the top of the specimens applied force to the 

specimens. The load was increased until the failure occurred at the mid-span of the 

specimens. Due to the very slow load increase, each test took almost one hour. 

The concrete beams in this study were not reinforced, and thus only one 

thorough crack appeared in mid-spam of each beam, as shown in Figure 5-5. 

Immediately after the cracking, the concrete beam lost its resistance, and this was 

shown in the loading history as a sudden decrease of loading.  
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Figure 5-5: Locations of a through crack, an actuator, and sensors at the specimen 

under a 3-point bending test 

5.3 Sensor arrangement and setup  

As flexural loading is applied gradually to a concrete beam, tensile cracks 

typically developed first, and then shear and compression cracks develop later. The 

tensile cracks which develop from the bottom of concrete beams can be used for 

early damage assessment.  

For characterisation of concrete, including crack detection and monitoring, 

Smart Aggregates were embedded in concrete members such as beams. However, 

externally mounted Smart Aggregate actuators and sensors have not received much 

attention in the literature. As demonstrated in Chapter 3, smart aggregates could be 

used as external actuators and sensors to transmit and receive signals propagated in 

concrete specimens. This experimental study extensively applies the proposed 

concept for the detection of cracks in concrete beams. For this purpose, three SA 
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transducers were mounted in the mid-span of a concrete beam, as shown in Figure 

5-6. Since in the concrete structures under bending, the cracks initiate from bottom of 

specimen, therefore one actuator (AC) and one sensor (ST) mounted on the tension 

(bottom) side of the beam, and one sensor (SC) mounted on the compression (top) 

side of the beam.  It should be mentioned that the surface of concrete where the 

transducers were mounted were polished. 

 

Figure 5-6: Schematic of SA transducers mounted on the concrete beam under test 

The locations of the actuator and the sensors, plus the distance (d) between them, are 

important. In this study, the distance has been taken to be 200 mm to cover the mid-

span area of each beam, as it was expected that cracks were concentrated in this area, 

especially for concrete beams that were not reinforced. For comparison, a wire strain 

gauge with resistance per meter 0.32 Ω was attached using glue in the mid-span area 

of a beam, as shown in Figure 5-7; this was done only for 4 out of 10 concrete 

beams. The strain gauge and transducer readings were continuously recorded at a rate 

of 10 channels per second using an automatic data-logger, which was calibrated 
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before the start of each test. The strain gauges had a measurement sensitivity of strain 

and displacement for ±1 micro-strain and ±0.001 mm, respectively. 

 

Figure 5-7: Strain gauge location at the bottom of a concrete beam 

LabVIEW software was used to generate a swept sine-wave as an excitation and to 

process the signals received from the SA sensors. Frequency range, signal swept 

period, and the amplitude of the sine waves were set to be from 150 Hz-150 kHz, 1 s 

and 10 V, respectively. The software recorded the signal data in a time domain every 

minute from the beginning to the end of loading. 

5.4 Results and discussions 

In this study, a 28-day cylinder compressive strength of 40 MPa was chosen 

to be the design strength of the concrete. The cylinders were capped with a high 

strength sulfur compound and tested in an Instron machine at the Structural 

Laboratory with 5000 kN compression capacity (Figure 5-8). After 7, 14, 28, 56 and 

92 days from the concrete casting, four cylinder specimens were tested each day. The 

measured compressive strength of the concrete cylinder specimens are provided in 

Table 5-2. The variation of the strength in the same day is due to the aleatoric 

Strain gauge 

Through crack 
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concrete mixture variations, water content variations, and curing temperature 

changes. To avoid bias in these variations, the average value on each day was taken 

as the concrete compressive strength (Figure 5-9). 

 

Figure 5-8: Cylindrical concrete specimen: (a) before and (b) after the test 

Table 5-2: Material compressive strength test results 

Day 

7 14 28 56 92 Specimen 
number 

1 25.8 30.9 41.1 46 50.6 

2 26.9 22 35.3 45.1 53.9 

3 23.8 30.5 42.8 44.8 54.8 

4 24.6 29 37.2 39.3 54.5 

 

a) Before the test b)  After the test 
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Figure 5-9: Average compressive strengths of the concrete cylinder specimens 

recorded 7, 14, 28, 56 and 92 days after casting 

In this experiment, sweep sinusoidal signal waves were generated by the actuator. 

The sweep sinusoidal signal ranged from 100 Hz and ended at 150 KHz, with a 

magnitude of 10V. The sweep period was set as 1 second and the recording period 

was set as 4 seconds, and hence at least three complete sweep periods were recorded 

during each measurement.  

During the loading procedure, the magnitude of the time-domain signals 

received by sensor was significantly decreased after the occurrence of cracking on 

the surface of concrete beams. This happened for both the tension sensor (ST) and 

compression sensor (SC). Figure 5-10 shows the time-domain signals received by the 

tension sensor (ST) every 5 minutes after loading commenced. Each plot corresponds 

to only one cycle of the detected signal from repeated swept sine waves.  
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Figure 5-10: Time-domain signals received by the tension sensor (ST) every 5 

minutes after loading commenced 

The recorded signals in Figure 5-10 show different shapes before and after cracking. 

Before cracking, the magnitude of the voltage gradually increases with loading. For 

example, the maximum sensor output value after 5 minutes is close to 4 mV, and 

after 25 minutes is close to 6 mV. However, after cracking occurs, the magnitude of 

the voltage significantly decreases. For example, the maximum voltage value after 25 
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minutes is close to 6 mV, while after 30 minutes it is close to 2 mV. This decrease is 

due to the blocked wave propagation by the cracking. We can infer that there was 

cracking between 25 and 30 minutes.  

As mentioned in Chapter 3, the LabVIEW software is capable of calculating 

power spectral density (PSD), which is the Fourier transform of autocorrelation of 

the stationary time-domain signals. In this study, for the purpose of future 

investigation and analysis, the PSD results were exported from the LabVIEW 

program to the MATLAB program. Figure 5-11 shows the PSD plots in the 

frequency-domain transformed from the time-domain signals in Figure 5-10, which 

shows the PSD peaks at the corresponding resonant frequencies. All PSDs are 

calculated using 4 periods of swept sine-wave to ensure a sufficient accuracy. 
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Figure 5-11: Power spectral density (PSD) for the tension sensor (ST) every 5 

minutes after loading commenced 
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The following observations can be made from these figures: 

1) The frequency-domain results shown in Figure 5-11 demonstrate different trends 

before and after the cracking, such as the time-domain results. Before the cracking, 

the peak of PSD gradually increases with the increasing load value. The peak of PSD 

value after 5 minutes is close to 32 V2/Hz, while after 25 minutes is close to 53 

V2/Hz. After the crack appears on the concrete beam, the peak of PSD significantly 

decreases with the increasing load value. The peak of PSD value after 30 minutes is 

close to 6.4 V2/Hz. This means that the wave propagation was almost blocked by 

cracks. 

2) Waves with lower frequencies attenuate much less than those with higher 

frequencies. For the time history response of sensors during the test, the magnitude 

decreases after a crack appears on the concrete beam in high frequency (80 kHz to 

120 kHz).  

3) A dramatic drop in the peak of PSD means an increase in crack width and length, 

and the wave propagation is prevented. It is noted that there is a dramatic reduction 

of the peak of PSD from between 25 and 30 minutes due to cracking. This shows 

useful information regarding the damaged or healthy status of the test specimen. 

As seen in Figure 5-11, it is sometimes difficult to precisely pin-point the 

peak of PSD. In this study, as an alternative measure, the total received power is 

proposed to be used to monitor cracking. The total power received by the sensor 

within a frequency range from 100 Hz to 150 kHz is calculated as follows: 

்ܲ = ∑ )ܦܵܲ ௜݂) × ௜݂
ଵହ଴௞
௜ୀଵହ଴       (5-1) 
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The MATLAB code was developed in this study to calculate the peak of PSD and 

total received power (Appendix A). The peak of PSD and the total received power 

for three concrete beams (SB22, SB16 and SB03) are shown in Figures 5-12 to 5-17, 

and the others are provided in Appendix B. 

  
a) ST sensor 

 
b) SC sensor 

Figure 5-12: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at 
the compression side of concrete beam SB22 
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a) ST sensor 

 

b) SC sensor 

Figure 5-13: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB22 
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a) ST sensor 

 

b) SC sensor 

Figure 5-14: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at the 
compression side of concrete beam SB16 
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a) ST sensor 

 

b) SC sensor 

Figure 5-15: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB16 
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a) ST sensor 

 

b) SC sensor 

Figure 5-16: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at the 
compression side of concrete beam SB03 
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a) ST sensor 

 

b) SC sensor 

Figure 5-17: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB03 
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The following observations can be drawn from these figures: 

1) The test results for peak of PSD and total received power shown in Figure 5-12 

are well distinguished before and after cracking. For example, specimen SB 22 

shows the peak of PSD value dropped from 79 V2/Hz to 19 V2/Hz between 2500 and 

3000 seconds, which is due to the cracking in the concrete beam. This means that the 

wave propagation was blocked by the cracking. These significant drops occur in both 

the peak of PSD and the total received for all concrete beam specimens. 

2) The compression side sensor results of the peak of PSD and the total received 

power indicate that total received power shows smaller fluctuations. For instance, 

Figure 5-17 clearly shows a smoother curve in the total received power for specimen 

SB03, compared to that for the peak of PSD (Figure 5-16). 

As mentioned in the signal processing section of Chapter 3, the standard 

deviation is a common measure to characterize the variation of signal measures. 

From the results of peak of PSD and total received power shown in Figure 5-12 to 

Figure 5-17, the variation for the values for different beams are obvious. To fairly 

compare and calculate the standard deviation of the signal measures, the peak of PSD 

and the total received power obtained from ten concrete beams were normalized and 

shown in Figure 5-18a and Figure 5-19a. The one standard deviation bounds of these 

results are plotted in Figure 5-18b and Figure 5-19b. 
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a) Normalised peak of PSD 

 

b) Standard deviation 

Figure 5-18: a) Peak of PSD results obtained from ten concrete beams after 
normalization and b) their standard deviation 
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a) Normalised total received power 

 

b) Standard deviation 

Figure 5-19: a) Total received power results obtained from 10 concrete beams after 
normalisation and b) their standard deviation 
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Two important observations can be made from these figures as follows: 

1) A dramatic drop in the received signal by the sensor suggests the occurrence of 

cracking in a concrete beam. This drop occurs to all 10 concrete beams tested in this 

study and gives information regarding the damaged or healthy status of the test 

specimens. 

2) The fluctuations of the peak of PSD values in comparison to the total received 

power values are shown in the standard deviation curves. The overall standard 

deviation bounds are narrower in the total received power than in the peak of PSD.  

As mentioned in the previous section, in this experimental study the load cell 

and strain gauges were also used for the purpose of comparison. The results of the 

peak of PSD and the total received power in the time domain were compared with 

those from the load cell and the strain gauge in the time domain. Figure 5-20 to 

Figure 5-22 show recorded load and strain by the load cell and the strain gauge, 

respectively.  
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a) Loading history 

 

b) Strain gauge result 

Figure 5-20: Results for (a) loading history recorded by a load cell and (b) a strain 
gauge result at mid-span of concrete beam SB22 
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a) Loading history 

 

b) Strain gauge result 

Figure 5-21: Results for (a) loading history recorded by a load cell and (b) a strain 
gauge result at mid-span of concrete beam SB16 
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a) Loading history 

 

b) Strain gauge results 

Figure 5-22: Results for (a) loading history recorded by a load cell and (b) a strain 
gauge result at mid-span of concrete beam SB03 
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As these figures show, significant drops in loading or significant increase in strain 

were observed when cracking occurred. The results of comparison between these 

loading and strain monitoring results and the results of the peak of PSD and the total 

received power obtained with the SA sensors can be summarise as follows. 

The proposed SA sensory technique is sensitive to the detection of cracking. It is 

noted that the dramatic drop of specimen SB22 in the received signal happened at 

2760 seconds, while the drop in loading history and increase in the strain were at 

2769 and 2770 seconds, respectively. It means that the detection by the proposed SA 

sensory technique is faster than that by a load cell or a strain gauge; this is similar in 

the other specimens. It also means that the proposed technique captures the 

occurrence of internal micro cracks even before the major cracking, compared to the 

load cell and the strain gauge. 

Table 5-3 and Figure 5-23 show the calculated damage indexes for 3 

specimens, SB22, SB16 and SB03, until 3600 seconds after the start of the loading. 

The index is calculated using Equation 3-2, in which the total energy received by the 

tension sensor has been used. In Table 5-3, the values over the selected threshold 

value of 0.5 are highlighted. It is also observed that the damage index is increasing 

even before the cracking, and this can be considered as a warning of cracking. The 

selected threshold value of 0.5 is shown by red line at the figures. A dramatic jump 

in the value of the damage index in Figure 5-23 can be attributed to cracking. 
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Table 5-3: Damage index values vs. time for concrete beam SB22, SB16, and SB03  

Time (S) 
SB22 SB16 SB03 

Time (S) 
SB22 SB16 SB03 

Damage Index Damage Index 

60 0 0 0 1860 0.02 0.03 0.17 

120 0 0.00 0 1920 0.04 0.03 0.19 

180 0.00 0.00 0 1980 0.04 0.03 0.20 

240 0.00 0.00 0.00 2040 0.05 0.02 0.22 

300 0.00 0.01 0.00 2100 0.06 0.02 0.25 

360 0.00 0.01 0.01 2160 0.08 0.02 0.27 

420 0.00 0.02 0.00 2220 0.10 0.01 0.30 

480 0.01 0.02 0.00 2280 0.12 0.01 0.35 

540 0.01 0.03 0.00 2340 0.14 0.00 0.80 

600 0.01 0.03 0.00 2400 0.17 0.01 0.83 

660 0.01 0.03 0.00 2460 0.19 0.01 0.83 

720 0.01 0.03 0.01 2520 0.22 0.03 0.82 

780 0.01 0.03 0.01 2580 0.24 0.05 0.83 

840 0.01 0.03 0.01 2640 0.25 0.07 0.82 

900 0.01 0.03 0.02 2700 0.26 0.09 0.82 

960 0.01 0.03 0.02 2760 0.27 0.12 0.81 

1020 0.01 0.03 0.02 2820 0.67 0.10 0.81 

1080 0.00 0.03 0.03 2880 0.64 0.59 0.81 

1140 0.00 0.03 0.03 2940 0.68 0.61 0.82 

1200 0.00 0.03 0.04 3000 0.69 0.61 0.87 

1260 0.00 0.03 0.04 3060 0.70 0.64 0.85 

1320 0.01 0.03 0.06 3120 0.71 0.68 0.85 

1380 0.01 0.03 0.07 3180 0.72 0.66 0.85 

1440 0.01 0.03 0.08 3240 0.71 0.69 0.86 

1500 0.01 0.03 0.10 3300 0.68 0.72 0.88 

1560 0.01 0.03 0.10 3360 0.65 0.75 0.88 

1620 0.01 0.04 0.12 3420 0.64 0.78 0.89 

1680 0.01 0.03 0.13 3480 0.69 0.78 0.90 

1740 0.01 0.04 0.14 3540 0.70 0.77 0.91 

1800 0.01 0.03 0.16 3600 0.71 0.78 0.91 
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a) Concrete beam SB22 

 

b) Concrete beam SB16 
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c) Concrete beam SB03 

Figure 5-23: The damage index values for concrete beam a) SB22, b) SB16 and c) 

SB03 

5.5 Summary   

In this chapter, a mounted SA based approach for the first time was proposed and 

applied for structural health monitoring of unreinforced concrete beams under 

bending. This active sensory technique used SA transducers mounted on the 

specimen under test to detect load-induced cracking. Ten concrete beams were 

prepared and cracked under a 3-point bending machine, and these behaviours were 

monitored by the proposed sensory technique as well as by a load cell and strain 

gauge. In the concrete beams, one actuator and one sensor were mounted on the 

tension side, and one sensor was mounted on the compression side. Based on the 

experimental results, the following conclusions can be drawn: 
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1. The proposed mounted SA based active sensing approach provided a 

successful detection of the cracks in the mid-span area of concrete beams 

under bending. 

2. The received signal analysis using the peak of PSD, the total received power 

and the damage index significantly enhanced indications of cracks.  

3. Mounted SAs can be applied for existing concrete members at different 

places on their surface while embedded SAs should be located at certain 

places inside concrete using rebars or artificially embedded holders, and they 

may be broken during vibration procedure.  

4. It was shown that the proposed method had an ability not only to detect the 

surface crack but also to detect the internal crack before it became visible.  

5. The proposed SA based method was more sensitive to cracking than a 

conventional load cell and strain gauge. Due to its sensitivity, the proposed 

method could predict the beam failure earlier than load cells or strain gauges.  

6. This method has the potential to be applied to the health monitoring of large-

scale reinforced concrete elements.  
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Chapter 6 : Detection and Monitoring of Crack on RC 
Beams under 4-point Bending Load Using Mounted Smart 

Aggregates 

 

6.1 Introduction 

In this chapter, for further investigation on feasibility of the proposed mounted SA-

based approach it is applied for health monitoring of existing large-scale RC beams 

which are the main parts of infrastructures. For this purpose, experiments are 

performed on four RC beams with mounted SAs to detect and monitor load-induced 

cracks which may occur in RC beams under flexural loading. SA transducers are 

mounted as an actuator and sensors on each of the RC beams. The load cell and 

strain gauge measurements of the RC beams are also performed for verification and 

comparison. 

This chapter consists of three main sections. The first section presents RC 

beams design and fabrication, and loading setup which are used for this experimental 

investigation. The second section provides details of the proposed SA transducers 

arrangement and setup on RC beams. Finally, the results in time-domain and 

frequency-domain as well as those obtained after signal processing are presented and 

discussed.  

 

6.2 Reinforced concrete beams and loading setup  

Several RC beams were designed and fabricated for this experimental investigation. 

The mix proportion of the ready-mixed concrete was used to cast the specimens. The 
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design was based on aggregates maximum size of 10 mm, 70 mm slump and 40MPa 

strength after 28 days. The water-cement ratio was 0.48. The Australian Portland 

cement type GB was used. Concrete and sand conformed to AS3600 (2009), while 

the coarse aggregate had a maximum size of 10 mm. The material properties used in 

this study are illustrated in Table 5-1. Twenty standard cylinders, measuring 102 x 

203 mm, were cast along with concrete beams. The cylinders were cast and cured 

under the identical environmental condition as that of the specimens: 7 days under 

moist burlap cover and the remaining time in the air-conditioned laboratory until 

testing. The compressive strengths were measured of 7, 14, 28, 56, and 92 days after 

casting, respectively. 

Four RC beam (1700×150×250 mm) specimens have been used in the 

experiment comprised of four deformed longitudinal reinforcements to allow an 

overall flexural failure. The RC beam specimens were rectangular in cross-section, 

with a width of 150 mm and a height of 250 mm. Deformed bar was a Class N 

(standard ductility with 500 MPa), manufactured by Australian Reinforcing 

Company (ARC) in Melbourne. The longitudinal and transverse reinforcement size 

used in this experiment were N16 steel bars, with a cross-sectional area of 201 mm2, 

and the N10 stirrups with standard 90º cog (Table 6-1). The moulds have been 

fabricated in a laboratory using plywood material and steel mesh fabricated 

separately and installed inside the mould before casting (Figure 6-2a). After the beam 

was filled in three layers, the concrete was consolidated with an internal spud 

vibrator. The concrete adjacent to the perimeter of the casting form was more 

intensively vibrated so that the ultimate failure of the panels would occur away from 

the edges. Surfaced finishing was applied, using hand float a few minutes after 

casting (Figure 6-2b). The RC beams were wrapped in wet burlap, covered in plastic, 
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and allowed to cure for 14 days at room temperature. After 14 days, the plastic and 

wet burlap were removed and the reinforced beams were allowed to cure in the 

ambient environment until testing. 

Table 6-1: Longitudinal Rebar Arrangement 

 Compression side Tension side 

Designation 
Number- size 

(mm) 

Area As  

(mm2) 

Number-size 

(mm) 

Area As  

(mm2) 

N1616 2-N16 402 2-N16 402 

 

 

Figure 6-1: Schematic of rebar arrangement cross-sectional view 
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Figure 6-2: RC beams specimens (a) before and (b) after casting 

Each test specimen was installed in the test frame as shown in Figure 6-3. The test 

frame (INSTRON machine) was modified for 4-point bending with a working 

capacity of 45 kips (1000 kN), and was located in the Structural Engineering 

Laboratory at the Western Sydney University. The machine has high bandwidth 

Digital Signal Processing based electronics, and Bluehill modular applications 

software. The machine was equipped with loading cell to monitoring real time of 

loading on specimen, and software, designed to record loading variation.  

(a) Before casting 

(b) After casting 
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Figure 6-3: 4-Point test frame used in this study 

The setup of the machine was based on specimen dimension, material 

properties, type of loading, and loading ratio. The loading cell must setup to zero 

force due to no pressure on specimen before loading. In this study speed of crack 

propagation was critical to obtain more accurate monitoring. Therefore, the loading 

of machine was in a quasi-static manner, with a constant testing machine crosshead 

displacement rate of (0.009 mm/sec) to allow accurate monitoring of the specimen 

cracking.  

4-points flexural bending test was selected for this experimental study. The 

specimens in the test frame sit on the top of two roller pedestals to help to provide 

pure bending. The loading pin at the top of specimens moved with 0.009 mm/sec 

ratio which applied force to specimens. Due to a very slow loading ratio, each test 

took almost an hour from commencing loading to failure of the beam. 
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Two rolling plates impregnated by grease oil were used on top of the 

specimen for applied force. In addition, two rubber layer sheets were used to prevent 

vibration caused by the hydraulic pump (Figure 6-4).  

 

Figure 6-4: Rubber sheets used to prevent vibration 

6.3 Sensor arrangement and setup  

In most cases of material failure and loading until failure, tensile cracks 

develop at the initial stage of loading, while shear and compression cracks occur 

frequently in the latter stages of the process. This is typical for concrete beams and 

slabs that undergo bending. The initial cracking comes from the tensile load on the 

bottom of concrete, while the member ultimately fails with diagonal shear cracks. 

Therefore, it is beneficial to characterize the tension cracks as it can lead to early 

assessment of the material condition.  

Chapter 5 demonstrated that the use of Smart Aggregate as external actuator 

and sensor investigated for concrete beams and the signal transmitted and received 
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successfully by sensor. The results show the crack successfully detected by both 

sensor in tension and compression sides. These findings motivate the proposed 

approach for large RC beams under 4-point bending, which will provide more 

compliance to real structures condition.  

As a shown on Figure 6-5, the arrangement of three SA transducers mounted 

on the specimen under test at the mild-span of specimen. Since in the concrete 

structures under bending, the cracks initiate from bottom of specimen, therefore one 

actuator (AC) and one sensor (ST) mounted on the tension (bottom) side of the beam, 

and one sensor (SC) mounted on the compression (top) side of the beam.  In four-

point concrete specimens testing, cracks started from the tension side (bottom of 

specimens) and spread to the neutral axis location. Cracks and delamination were 

expected at the top of specimen, due to increasing the comparison in this side. 

Therefore, unlike the results with the concrete beam in Chapter 5, expected different 

transmission properties were received by mounted SAs to RC beams.  

 

Figure 6-5: Schematic of SA transducers on the specimen under test 
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Due to the reinforcement of the concrete beam specimens, several anticipated 

cracks appeared in the mid-span area. As shown in Figure 6-5, d = 400 mm were 

selected to cover the mid-span area. For comparison, five strain gauges and linear 

LVTD traditional health monitoring approaches were implemented at the mid-spam 

of four concrete beams (Figure 6-6). The wire strain gauges with resistance per meter 

0.32 Ω were attached using glue to bottom of concrete beam. The strain gauges were 

continuously recorded at a rate of 10 channels per second, using an automatic data-

logger calibrated prior to each test and capable of measuring to a sensitivity of ±1 

micro-strain and ±0.001 mm, respectively. 

 

Figure 6-6: Strain gauges and LVDT location at the bottom of specimen 

A LabVIEW program was used to generate the swept sine-wave as the 

excitation wave, and to provide signal processing of received signals, i.e., the output 

signals of the piezoceramic sensor. Unlike the minimum frequency range set in 

Chapter 5, the range was set for 500 Hz, to avoid low frequency noise caused by the 

hydraulic pump. The maximum frequency, signal swept period and amplitude of the 

sine waves were set to be 150 kHz, 1 s and 10 V, respectively. The program recorded 
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every minute of test from beginning to end of loading, and saved the data in time-

domain format. The received raw signal, using wavelet packet analysing, evaluated 

the health status of the tested concrete beams. 

6.4 Results and discussions 

For the purpose of this study, a cylinder compressive strength of 40MPa was 

chosen as the target test strength of the concrete after 28 days of casting, similar to 

the compressive strength selected for the study detailed in Chapter 5. The actual 

compressive strength of the concrete cylinder specimens are listed in Table 5-2. Four 

cylinder specimens were tested based on date plan and the average shown in Figure 

5-9. The results obtained by sensors and attached LVDT and strain gauges are 

evaluated in the following two sections. 

6.4.1  Signal processing data analysis 

In this experiment, the sweep sinusoidal signal wave was generated by the 

actuator. The sweep sinusoidal signal started from 500 Hz and ended at 150 KHz, 

with a magnitude of 10V. The sweep period was set as 1 second and the recording 

period as 4 seconds, therefore a minimum of three complete sweep periods were 

recorded in each measurement. As mentioned in Chapter 3, the LabVIEW software 

can be setup based on the above assumptions and display the receive signal in time-

domain format.  

From the received signal, one record has been saved every second for future 

analysis. During the loading procedure, many noises appear in time-domain received 

signal which make it difficult to evaluate and compare time-domain signals. After 

recording the time-domain signal every few minutes throughout the test, the results 
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were evaluated in frequency-domain to avoid noises which mostly happened in very 

low frequency.   

Therefore, Fourier transform has been applied on recorded time-domain 

signal, by using LabVIEW program, and the results formatted in PSD (frequency-

domain) were exported to MATLAB program for future investigation and analysis. 

A MATLAB code was used (Appendix A) for plotting and evaluation of frequency-

domain signals. All PSDs were calculated using four periods of swept sine-wave in 

order to obtain a better accuracy. 

Figure 6-7 depicts the received frequency-domain signals from the sensor (ST) that 

were documented every 5 minutes after the loading commenced. Each plot 

corresponds to only one cycle of the detected signal, in the level of millivolts, from 

repeated swept sine wave. 
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Figure 6-7: Power spectral density (PSD) for the sensor (ST), measured every 5 
minutes, after loading commenced, for the duration of 60 minutes 
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Several observations can be made from Figure 6-7 that show different 

properties of the transmission waves in the concrete beam. The test results in 

frequency-domain shows that there is deference between the before and after 

cracking moment. Before the cracking moment, the peak of PSD slightly increases 

with the increasing load value. The peak of PSD value after 5 minutes is close to 6.6 

V2/Hz, while after 30 minutes it is close to 8 V2/Hz. After the cracking moment on 

RC beams, the peak of PSD dramatically dropped with the increasing load value. The 

peak of PSD value after 30 minutes is close to 8 V2/Hz, while after 35 minutes it is 

close to 3.7 V2/Hz. This dramatic drop can be correlated to the indication of a crack 

on the RC beam which is not visible (cracking moment). The reduction continues 

after the main drop, thus after 60 minutes of beginning the test, peak of PSD value 

rich to 0.8 V2/Hz. This means that the wave propagation was almost totally blocked 

when the concrete beam failed by cracking. 

Similar to the concrete beam results in Chapter 5, waves of lower frequencies 

attenuate much less than those of higher frequencies. In the frequency-domain 

response of sensors during tests, the magnitude variation was always in the range of 

80 kHz to 120 kHz. Similar observations can be taken from the concrete beams 

results in Chapter 5. Therefore, it can be concluded that the sweep sine wave signal 

attenuated at a frequency range of 80 kHz to 120 kHz for concrete materials. 

Shortly after a dramatic drop in peak of PSD, cracks become visible on the 

surface of RC beams, often causing RC beam failure. It is noteworthy that there is a 

dramatic reduction of the peak of PSD from 8 to 0.8 V2/Hz after cracks appear in the 

RC beam; generally, cracks became so severe that they blocked most wave 

propagation. In summary, the raw frequency-domain data offers useful information 
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regarding the damaged or healthy status of the RC beam and can be used for early 

assessment of RC beams. 

For the damage and cracks induced in the mid-spam of the concrete beam, the 

bending moment is the major factor in generating damage and cracks. In flexural 

member like RC beam the crack always start from the tension side, which proved our 

approach in using a sensor in the bottom of specimens (Figure 6-5). Comparatively, 

by using additional sensors Figure 6-5 shows the detection of cracks in the tension 

side was investigated by using a sensor in the compression side (SC). Figure 6-8 

shows the received frequency-domain signals from the SC every 5 minutes after 

commencing loading. Each plot corresponds to only one cycle of the detected signal, 

in the level of millivolts, from repeated sweep sine wave. 

Similar to the results of ST, the SC results in frequency-domain shows the 

deference before and after the cracking moment. According to Figure 6-8, before the 

cracking moment, the peak of PSD slightly increases and then significantly 

decreases. The peak of PSD value before cracking moment is close to 3.8 V2/Hz, 

while after cracking it is close to 2 V2/Hz.  



  

 
 156   

 

 



  

 
 157   

 

 



  

 
 158   

 

 

Figure 6-8: Power spectral density (PSD) for the sensor (SC) measured every 5 
minutes, after commencing loading, for the duration of 60 minutes 
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Although the variation in frequency-domain results of SC at the cracking 

moment is very similar to ST results, there is a difference after the cracking moment 

in the SC results. The frequency-domain amplitude values after the cracking moment 

dramatically drop, while a few minutes after this drop it slightly increases then 

dropped again. The peak of PSD value after cracking appear to drop from 3.8 V2/Hz, 

to 1.6 V2/Hz and then slightly increases to 2.1 V2/Hz, while after a further few 

minutes dropped to 0.7 V2/Hz. This variation is related to RC beam behaviour under 

bending. The reason for the first drop was the indication of a crack in the tension side 

while the sensor was attached to the compression side (SC). As shown in Figure 6-9a, 

after the cracking moment in the tension side, the compression in the top of the RC 

beam significantly increased, which is the prime reason for slightly increasing the 

amplitude of peak of PSD. As shown in Figure 6-9b, increasing the compression at 

the top of RC beam, cracks and delamination occurred which caused a second drop 

in amplitude of peak of PSD. 
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Figure 6-9: Different stage of loading which caused a) tension cracks and b) tension 
and compression cracks 

 

Tension Cracks 

Tension Cracks 

Compression Cracks 

a) Tension cracks 

S
C
 

S
C
 

b) Tension and compression cracks 



  

 
 161   

 

For a more accurate comparison of the results, the value of peak of PSD and 

total received power for each record has been calculated using the MATLAB code 

(Appendix A). Figure 6-10 to Figure 6-17 shows the results of peak of PSD and total 

received power received by ST and SC for four RC beams (LB01, LB02, LB03, 

LB04) under 4-point loading. 

 

c) ST sensor 

 

d) SC sensor 

Figure 6-10: Peak of PSD vs time for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of RC beam LB01 
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a) ST sensor 

 

b) SC sensor 

Figure 6-11: Total received power vs time for (a) ST sensor at the tension side and (b) 
SC sensor at the compression side of RC beam LB01 
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a) ST sensor 

 

b) SC sensor 

Figure 6-12: Peak of PSD vs time for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of RC beam LB02 

 

 

1500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time  (Sec)

Pe
ak

of
 P

SD
 (V

2 /
H

z)

1560

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500

Time  (Sec)

Pe
ak

of
 P

SD
 (V

2 /
H

z)



  

 
 164   

 

 

a) ST sensor 

 

b) SC sensor 

Figure 6-13: Total received power vs time for (a) ST sensor at the tension side and (b) 
SC sensor at the compression side of RC beam LB02 
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a) ST sensor 

 

b) SC sensor 

Figure 6-14: Peak of PSD vs time for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of RC beam LB03 
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a) ST sensor 

 

b) SC sensor 

Figure 6-15: Total received power vs time for (a) ST sensor at the tension side and (b) 
SC sensor at the compression side of RC beam LB03 
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a) ST sensor 

 

b) SC sensor 

Figure 6-16: Peak of PSD vs time for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of RC beam LB04 
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a) ST sensor 

 

b) SC sensor 

Figure 6-17: Total received power vs time for (a) ST sensor at the tension side and (b) 
SC sensor at the compression side of RC beam LB04 
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Several observations can be made from Figure 6-10 to Figure 6-17 that shows 

variation of peak of PSD and total received power during loading: 

1) The test results for peak of PSD and total received power shown in figures can be 

divided into the before and after cracking moment. For example, specimen LB02 

shows peak of PSD value at the certain time from 4.2 V2/Hz dramatically dropped to 

1 V2/Hz, which can be correlated to the beginning of a crack in the RC beam. This 

means that the wave propagation was almost totally blocked when the RC beam 

failed by cracking. This dramatic drop in value of peak of PSD and total received 

power happened in all RC beam specimens. 

2) Similar to the results with concrete beams in Chapter 5, peak of PSD is not 

outstanding, rather a number of frequencies share the received power. So the 

compression results of peak of PSD and total received power indicate that total 

received power shows less variations in consecutive record before and after cracking. 

Figure 6-10a and Figure 6-11a, for specimen LB01, clearly shows how the variation 

of peak of PSD curves trended in total received power curves. 

3) In the results of peak of PSD for all RC beam specimens, before indication of a 

crack, the value of peak of PSD slightly increased. For example, in specimen LB04 

(Figure 6-16), the value of peak of PSD before the cracking moment increased from 

7 V2/Hz to 8.7 V2/Hz and after dropped to 3.4 V2/Hz. Similar observations were 

recorded from the other specimens with more or less variation. Therefore, the 

findings can be used for early assessment of RC beams before the cracking moment. 

4) The results of peak of PSD for the sensor in the compression side (SC) show that 

after indications of the cracks in the tension side the value of peak of PSD dropped. 
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With increased compression in the top of the specimen, the value of the peak of PSD 

slightly increased then dropped again due to cracks and delamination on the top of 

beams (Figure 6-9). For example, Figure 6-16b shows the peak of PSD after the 

cracking moment dramatically dropped from point 1 to 2 (marked on the figure) and 

then slightly increased to point 3, while dropping again to point 4 moments later. 

Therefore, the findings verify that it is not necessary that the actuator and sensor 

attach to the damaging zone of specimens which as mentioned in literature review 

was a challenging issue for researchers to take aware sensors from damage zone. 

5) A comparison between the results of the sensor in the compression side (SC) and 

sensor in (ST) shows the dramatic drop in the value of peak of PSD and total received 

power occurred in the different time. For example, as shown in Figure 6-12, a 

dramatic drop in peak of PSD curves received by ST and SC were 1500 and 1560 

seconds, respectively. This means the SC detected the cracking moment 60 seconds 

later or the crack was closer to ST sensor. Although 60 seconds in 0.009 mm/sec 

loading ratio is equal to a small amount of load, early assessment is the main priority 

for researchers. Therefore, the arrangement of sensors must be considered as another 

important aspect for early assessment of RC elements. 

In the next step of data analysis, as mentioned in the signal processing section of 

Chapter 3, standard deviation is the most common way to characterise the spread of a 

data set. From the results of peak of PSD and total received power, shown in Figure 

6-10 to Figure 6-17, the difference in level of received signal were obvious. These 

differences correlated to heterogeneity of concrete material structure which is 

effected by signal propagation in different specimens. Consequently, before applying 

the standard deviation, the results of peak of PSD and total received power obtained 
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from four RC beams normalized, as shown in Figure 6-18a and Figure 6-19a; and 

then standard deviation was applied on normalized data, as illustrated in Figure 

6-18b and Figure 6-19b. 

 

c) Normalised peak of PSD 

 

d) Standard deviation 

Figure 6-18: Peak of PSD results obtained from four RC beams after a) normalisation 
and b) standard deviation 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 1000 2000 3000 4000 5000

LB01

LB02

LB03

LB04

Time  (Sec)

N
or

m
al

is
ed

 p
ea

k
of

 P
SD

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 1000 2000 3000 4000 5000

Time  (Sec)

Pe
ak

of
 P

SD



  

 
 172   

 

 

c) Normalised total received power 

 

d) Standard Deviation 

Figure 6-19: Total received power results obtained from four RC beams after a) 
normalisation and b) standard deviation 
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The normalised curves for peak of PSD and total received power shows the dramatic 

drop in signal that happened for all RC beams used in this study. The peak of PSD 

and total received power of specimen LB04 shows more variation in consecutive 

records in compression with other specimen results. This variation is clearly 

observable in standard deviation curves for LB04 specimen. However, the dramatic 

drop in the value of received signal before and after cracking promising all 

specimens clearly detected the cracking moment. 

The proposed damage index in Chapter 3, using equation 3-2, represents the 

transmission energy loss caused by damage. When the damage index is close to 0, it 

means the structure is in a healthy state. When the damage index is greater than a 

certain threshold, it means damage has appeared. In this study, the index value more 

than 0.5 is categorised as serious damage. When the damage index is very close to 1 

it means the concrete structure is near failure. Table 6-2 and consequently Figure 

6-20 shows the calculated damage indexes for four RC beam specimens for a period 

of 4080 seconds after loading began. The highlighted damage index in the table 

shows the specimen cross the threshold to serious damage zone (highlighted by blue 

colour). The table also presents calculations of increasing the value of damage index 

before cracks occur (highlighted pink), which can be categorised as a warning before 

specimens cross the threshold into serious damage; this consequently predicts 

structure failure. The results in Table 6-2, shown on Figure 6-20, clearly show the 

jump in the value of damage index, which correlated to the cracking moment on RC 

beams and increase in number of cracks and width. The selected threshold value of 

0.5 is shown by red line at the figures. 
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Table 6-2: Damage index values calculated at different time of loading 

Time (S) 
LB01 LB02 LB03 LB04 

Time (S) 
LB01 LB02 LB03 LB04 

Damage Index Damage Index 

60 0 0 0 0 2100 0.83 0.83 0.85 0.56 

120 0.04 0.06 0 0 2160 0.87 0.87 0.96 0.55 

180 0.04 0.03 0 0 2220 0.91 0.91 0.94 0.67 

240 0.00 0.03 0.01 0.02 2280 0.96 0.96 0.93 0.83 

300 0.04 0.15 0 0 2340 0.96 0.96 0.95 0.85 

360 0.00 0.09 0 0.02 2400 0.96 0.96 0.95 0.80 

420 0.00 0.15 0.04 0 2460 0.96 0.96 0.96 0.89 

480 0.00 0.12 0.02 0.02 2520 0.91 0.91 0.94 0.76 

540 0.04 0.15 0.03 0.02 2580 0.91 0.91 0.97 0.85 

600 0.09 0.12 0.03 0.03 2640 0.91 0.91 0.98 0.79 

660 0.09 0.12 0.02 0.02 2700 0.91 0.91 0.99 0.83 

720 0.04 0.12 0.03 0.03 2760 0.91 0.91 0.99 0.83 

780 0.09 0.09 0.03 0.03 2820 0.91 0.91 0.98 0.83 

840 0.09 0.09 0.02 0.08 2880 0.91 0.91 0.98 0.83 

900 0.13 0.06 0.01 0.08 2940 0.96 0.96 0.99 0.85 

960 0.13 0.06 0.01 0.03 3000 0.91 0.91 0.97 0.85 

1020 0.13 0.09 0.01 0.02 3060 0.91 0.91 0.96 0.85 

1080 0.13 0.12 0.04 0.06 3120 0.91 0.91 0.99 0.85 

1140 0.13 0.12 0.26 0.03 3180 0.91 0.91 0.99 0.86 

1200 0.13 0.15 0.34 0.06 3240 0.87 0.87 0.99 0.88 

1260 0.17 0.12 0.60 0.21 3300 0.91 0.91 0.99 0.82 

1320 0.17 0.09 0.71 0.29 3360 0.96 0.96 0.99 0.79 

1380 0.13 0.18 0.74 0.30 3420 0.91 0.91 0.99 0.80 

1440 0.22 0.24 0.81 0.32 3480 0.87 0.87 0.98 0.86 

1500 0.13 0.27 0.85 0.29 3540 0.87 0.87 0.99 0.82 

1560 0.09 0.70 0.83 0.21 3600 0.87 0.87 0.99 0.89 

1620 0.22 0.55 0.86 0.50 3660 0.87 0.87 1.00 0.86 

1680 0.30 0.79 0.93 0.51 3720 0.87 0.87 1.00 0.88 

1740 0.65 0.85 0.95 0.50 3780 0.87 0.87 0.99 0.92 

1800 0.74 0.91 0.90 0.45 3840 0.87 0.87 1.00 0.82 

1860 0.74 0.91 0.92 0.44 3900 0.91 0.99 1.00 0.88 

1920 0.87 0.91 0.84 0.53 3960 0.96 1.00 0.99 0.91 

1980 0.78 0.94 0.84 0.67 4020 0.96 1.00 1.00 0.92 

2040 0.78 0.85 0.84 0.61 4080 1.00   0.92 
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a) LB01 

 

b) LB02 
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c) LB03 

 

d) LB04 

Figure 6-20: Damage index value for RC beam specimens a) LB01, b) LB02, c) 
LB03 and d) LB04 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time  (S)

D
am

ag
e

in
de

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time  (S)

D
am

ag
e

in
de

x



  

 
 177   

 

6.4.2  Verification of signal processing data 

In this experimental study the load cell, strain gauges, and LVDT results are 

also implemented for comparison and verification purposes. Before investigation on 

these results, theoretical investigations are necessary to find the cracking moment 

and are used as a bridge between load cell results and sensor results. The theoretical 

investigations can show the sensor performance in detection, evaluation, and 

prediction of damage before RC beams failure. Initially, the beams are uncracked 

where they exhibited linear moment–deflection behaviour. This is attributed to the 

linear elastic characteristics of rebar and concrete. With additional loading, cracking 

occurs at the constant moment zone when the applied moment exceeds the cracking 

moment, causing a reduction in stiffness and resulting in beam failure. This is due to 

the wider crack openings in the RC beams, which is attributed to the modulus of 

elasticity of rebar. Therefore, early assessment of the cracking moment (ܯ௖௥) has 

been calculated using the following equations suggested by Australian standard 

(AS3600, 2009): 

௖௥ܯ = ܼ൫ ௖݂௧.௙
´ ൯ ≥ 0.0        (6-1) 

where ௖݂௧.௙
´  is the characteristic flexural tensile strength of concrete specified as 

௖݂௧.௙
´ = 0.6ඥ ௖݂

´. 

Z is the section modulus of the uncracked section obtained from dividing moment of 

inertia uncracked section to distance of neutral axis to top of the beam, 

 ܼ =  ௕ݕ/௨௡௖௥ܫ

ܼ =
ଵଽହ.ଷ×ଵ଴ల

ଵଶହ
= 1.56 × 10଺ ݉݉ଷ  
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and, 

௖݂௧.௙
´ = 0.6√50 

௖݂௧.௙
´ =  ܽܲܯ 4.24

Thus, the cracking moment can be found as following: 

௖௥ܯ = 1.56 × 10଺ × 10ିଽ × (4240000)  

௖௥ܯ = 6614.4 Nm 

and the applied load (F) at time of cracking moment can be calculated as following: 

௖௥ܯ =
ி௅

ସ
         (6-2) 

ܨ = (4 × 6614.4)/1.5  

ܨ =   ܰ݇ 17.638 ݎ݋  ܰ 17638

The results of loading history for four RC beams have been shown in Figure 6-21. In 

addition, the cracking moment time has been shown using the intersection of load 

coordination obtained from Equation 6-2 and load history recorded by load cell. 
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a) LB01 
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c) LB03 

 

d) LB04 

Figure 6-21: The loading history recorded by load cell for specimens a) LB01, b) 

LB02, c) LB03 and d) LB04 
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The comparison of loading history results (Figure 6-21) and sensor results 

(Figure 6-10 to Figure 6-17) reveals that the dramatic drop in peak of PSD and total 

received power were slightly before or equal to cracking moment in loading history 

results. The dramatic drop in peak of PSD results of four RC beams occurred 1500, 

1500, 1140 and 1560 seconds after the tests began, while the cracking moment in 

time history results were 1546, 1507, 1300 and 1560, respectively. In summary, it 

seems that the attached sensors successfully detected the crack from the first sign 

(cracking moment) and before any failure in RC beam resistance. The above 

comparison may raise a question about verification not by theoretical calculation, but 

by the experimental test implemented during the RC beam test. Hence, the results of 

attached strain gauges and LVDT during the test were presented in time-history 

format as shown in Figure 6-22 and Figure 6-23. In both figures the marked red 

circle and consequent time has been marked as a sign of changes in deflection and 

strain value which can be correlated to the cracking moment. 
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c) LB03 

 

 

d) LB04 

Figure 6-22: The LVTD data records at the bottom of specimens a) LB01, b) LB02, 
c) LB03 and d) LB04  
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a) LB01 

 

b) LB02 
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c) LB03 

 

d) LB04 

Figure 6-23: The strain gauges data records attached at the bottom of RC beam 
specimens a) LB01, b) LB02, c) LB03 and d) LB04 
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The above figures show the deflection on RC beams appears after strain increases in 

bottom of specimens; means strain gauges were changed earlier than LVDT. As 

Figure 6-23 shows, the first sign in increasing the value of externally bonded strain 

gauges happened in the certain time (marked with red circle) for each specimen and. 

The value of strain in this time was less than 0.001, while according to the ACI 318-

08 (Committee et al., 2008) standard for RC beam design the maximum usable strain 

sets at 0.002 or 0.003. This means RC beams under a minimum 0.002 strain in the 

elastic zone without any cracking. Meanwhile, the results of peak of PSD were 

almost a coincidence, with appearance signs of strain occurring during the loading, 

and even more accurate in proposed damage index results. The signs of increasing 

strain for LB01, LB02, LB03 and LB04 appeared at 1500, 1400, 1250 and 1350 

seconds, while damage index results were recorded at 1440, 1380, 1140 and 1260, 

respectively. Therefore the proposed damage index was more sensitive than the 

LVDTs and strain gauges, since the proposed damage index can detect internal strain 

and cracks before they appear on the structure’s surface. 

It is clear in Figure 6-23 some strain gauges did not change in terms of value, which 

is correlated to location of bonded strain gauge at the cracking zone. Figure 6-24 

shows an LB01 specimen during the loading with five external bonded strain gauges 

located across the entire mid-spam to cover all the cracks. It is clear four of the strain 

gauges were in the cracking zone, while one strain gauge was out of the cracking 

zone. This is very common on RC beams under bending load, as cracks do not 

necessarily appear in the middle of the beam. Therefore, the ability of sensors to 

cover the entire area of the mid-spam is one of the advantages and points of 

excellence of the proposed approach. 
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Figure 6-24: The location of cracks and bonded strain gauges in bottom of RC beam 

6.5 Summary   

This chapter presented application of the proposed mounted-SA based approach for 

health monitoring of RC beams. The SA transducers were used as both actuator and 

sensors to detect load-induced cracks. Four RC beams instrumented with SAs were 

gradually loaded under 4-point bending machines till failure. One actuator and one 

sensor were implemented in the tension side of the beam under test and one sensor 

was used in its compression side to cover the entire of the mid-spam area. The peak 

of PSD and the RMSD as a damage index were used for the detection and monitoring 

of cracking in RC beams under gradually increasing loading. The results were also 

verified and compare using the load cell and strain gauge measurements, and the 

design equation for predicting a cracking moment. Overall, the following 

conclusions can be made: 

Strain Gauges in 
Cracking Zone 

Strain Gauges in Non-
Cracking Zone 
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1. The proposed mounted-SA approach effectively evaluates the cracking status of 

RC beams under flexible loading using the peak of power spectral density, total 

received power and its standard deviation, and damage indexes.  

2. It was shown for the first time that the proposed mounted-SA based sensory 

system could capture a precautionary signal for major cracking. The experimental 

results for peak of PSD and total received power showed that the transmission 

energy between the SA actuator and SA sensors in the RC beams dropped 

dramatically after the cracking moment. 

3. The proposed mounted-SA sensory system is more sensitive to the cracking 

moment than the load cell and strain gauges.  

4. When using the proposed approach the SA transducers should be located in 

critical parts (damage zones) of the RC members. Appropriate number of the SA 

sensors can provide the determination of location of cracks and their severity.  

5. It was demonstrated that the mounted SAs are robust, reliable and easily 

implementable to concrete structures. They can be implemented to existing RC 

concrete members at different places.  

6. The proposed mounted-SA based active sensing approach can be an effective 

method for structural health monitoring of practical-scale RC beams at an 

economical cost without using additional bulky equipment. 
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Chapter 7 : Detection and Monitoring of Crack on RC 
Composite Slab under Cyclic Load Using Mounted Smart 

Aggregates 

 

7.1 Introduction 

In practice, RC concrete slabs and beams are often connected with other 

members of infrastructures. For example, concrete-steel composite members, such as 

concrete-filled steel tubular (CFST) columns, have many structural and 

constructional benefits (Han et al., 2014). The CFST column, normally connected to 

the concrete beam, works as formwork for concrete pouring during construction, 

which reduces construction cost and time. The steel beams are also often connected 

to RC slabs using shear connectors which make a strong composite member. The use 

of these composite members in building construction has greatly increased in recent 

years. The well-known standards like FEMA-350 (2000) and Eurocode 8 Part 3 

(2005) provide guidelines for the composite members, mainly based on studies of 

steel beams without floor slabs (Huang et al., 2014, Li et al., 2017). However, limited 

research has been performed on health monitoring of RC slab as a part of composite 

members. 

This study is a part of a project which investigated the cyclic behaviour of 

composite members with joints and reduced beam sections (Li et al., 2017).  Since 

SA transducers have the advantage of structural simplicity low cost, quick response 

and high reliability, feasibility of the developed mounted SA based approach for the 

health monitoring of RC slab with composite connections is investigated in this 

chapter. Experiments are performed on the composite member under cyclic load with 
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SAs transducers mounted on its RC slab to detect load-induced cracks. The 

measurements with a mechanical strain gauge are also conducted. 

This chapter consists of three main sections, with the first section providing 

the information about the composite member preparation and the loading setup used 

in this study. The second section presents details of SA transducers arrangement and 

setup on the RC slab of the member. The third section focuses on the results and 

discussion of the investigation.  

7.2 Specimen preparation and loading setup 

A composite cruciform joint specimen was designed and constructed based 

on the provisions of EC3 (BS, 1993), EC4 (CEN), EC8 (Standard, 2005), AS 2327.1 

standards (Mills, 2001), and a reduced beam section (RBS) was used for the 

specimen. The geometric details of the specimen with RBS beam are illustrated in 

Figure 7-1a, with the cut length of 80 mm and the cut depth of 31 mm.  

The specimen was designed representing a joint at half scale. The profiles of 

circular steel tubes were 250 mm in diameter (D) and 6 mm in wall thickness (ts), as 

shown in Figure 7-1b. Two types of universal steel beams (200UB25.4 and 

250UB25.7) were used, with a length of 1500 mm from the centre of the column to 

the assumed inflection point of the beam. The width and depth of the RC slab were 

800 mm and 60 mm, respectively. Through diaphragms, with a thickness of 10 mm, 

were used to connect the column to the steel beam. The outer diameter, inner 

diameter, and vent hole diameter of the through diaphragms were 300 mm, 120 mm, 

and 20 mm, respectively. Sixteen M19 headed shear studs, with a length of 50 mm 

and a diameter of 19.3 mm, were welded at a spacing of 200 mm along the steel 
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beam to connect the steel beam to the floor slab, as shown in Figure 7-1a and c. A 

layer of reinforcement (10 mm) was placed in the RC slab, which were 

longitudinally and transversely distributed along the slab at a spacing of 100 mm. 

The clear cover to the reinforcement was 20 mm. Complete joint penetration (CJP) 

groove welds were used to connect the through diaphragm and the beam.  

 

 

a=80, b=220 

 

(a) Plan view of the RC slab and RBS with cross-section A-A  

RC slab 

RBS 
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Figure 7-1: Configuration of the specimen (units: mm) (Li et al., 2017) 

Each CFST column, with two end plates measuring 1600 mm in length, was 

fabricated in three segments separated by two through diaphragms, as shown in 

Figure 7-2. The through diaphragms were welded to the steel tube by double-fillet 

welds. The beam flanges were welded to the through diaphragms, and the beam web 

(b) Elevation of a typical test specimen with two cross-sections B-B and C-C 

(c) Section A-A 
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was welded directly to the steel tube. The thicknesses of all weld seams measured 

approximately 6 mm. Each end of the steel tube was welded to a 350×350 mm2 steel 

plate; the steel plate on the top end had a 160 mm diameter hole used for pouring 

concrete (Li et al., 2017). 

 

Figure 7-2: Details of the steel tube (units: mm) (Li et al., 2017) 

Grade C32 concrete was used for the infilled concrete and RC slab. Concrete 

cylinder tests were conducted according to Australian standards to measure concrete 

properties. The measured concrete cylinder compressive strength and tensile strength 

were 36.5 and 4.7 MPa, respectively. The Young’s modulus of concrete was 37,740 

MPa at the time of testing. 

A constant axial compressive load of 1116 kN was applied to the CFST 

column by a hydraulic jack during the testing (Tao et al., 2017). The axial load level 

(n) of the column was 0.4. Two hinges were attached to the top and bottom ends of 

the column to simulate a pin-pin boundary condition. The distance from the centre of 

a hinge to the nearest end of the specimen was 230 mm. The two ends of the beam 

were free where two actuators, with a loading capacity of 500 kN, were attached to 

apply cyclic loads. The distance from one loading point to the column centre was 

1500 mm. 
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Figure 7-3: Schematic of test setup (units: mm) 

The two actuators were arranged to apply equal but opposite displacements at the 

same time. The cyclic displacement amplitude followed the loading protocol in SAC 

(Venture, 1997). As shown in Figure 7-4, the Drift angle (θ) was used to control the 

loading history, which was defined as the beam deflection at the loading point 

divided by the beam span.  

The loading history was divided into several steps. Firstly, the loading started 

with six cycles at each load step of 0.00375, 0.005 and 0.0075 rad rotation, 
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respectively. The next four cycles in the 4th load step were at 0.01 rad rotation, 

followed by two cycles in the 5th load step of 0.015 rad rotation. The loading 

sequence completed two cycles at each rotation level, followed by increasing the 

rotation value to 0.02 rad, 0.03 rad, 0.04 rad…until the strength of the joint decreased 

to 85% of its ultimate flexural resistance. The cyclic loading speed was controlled at 

a rate of 0.5 mm/s. 

 

Figure 7-4: Cyclic loading protocol 

 

7.3 Sensor arrangement and measurement setup 

For early assessment of an RC element condition, it is important to promptly 

detect cracks. Chapter 6 successfully demonstrated the capability and reliability of 

the use of mounted SA transducers to health monitoring of RC beams under bending 

load. The SA arrangement provided useful information about cracks caused by 

tension and compression in two sides (top and bottom) of an RC slab. However, RC 

slab under cyclic loading for each loading cycle can experience tension and 

compression in each side (top and bottom). Therefore, unlike the arrangement of the 
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transducers in the previous chapter, in this study SAs are mounted to only one side of 

a specimen. In this case one actuator (AC) and two sensors (SE1 and SE2) mounted 

on the top side of the slab with different distances. 

In this experiment, a total of three SAs were mounted on each of the RC slabs 

around the beam-column joint, which consisted of one actuator and two sensors, as 

shown in Figure 7-5. In this RC slab, cracks were expected to be developed around 

the column area close to RBS zone; therefore, SAs were mounted to the surface of 

the slab around the column, close to the RBS zone. Sensors 1 and 2 were located at 

300 mm and 400 mm distances from the actuator, respectively, as shown in Figure 

7-5. In addition, a demountable mechanical strain gauge was bonded around RSB 

zone for the purpose of verification (Figure 7-6). 

A LabVIEW software was used to generate a swept sine-wave as the 

excitation wave, and to process received signals. The minimum frequency range was 

set to 500 Hz to avoid noises in a very low frequency caused by a hydraulic pump. 

The maximum frequency, signal swept period, and amplitude of the sine waves were 

set to 150 kHz, 1 s, and 10 V, respectively. The test was recorded every 30 minutes 

during the loading, and the data were saved in a time-domain format. The received 

raw signals were analysed using the data analysis tools introduced in Chapter 3. 
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Figure 7-5: Schematic of the specimen, measurement setup, and its output signal in 

time-domain 

 

Figure 7-6: Top view of RC slab with SAs and demountable mechanical strain gauge 

7.4 Results and discussion 

Similar to Chapter 6, the results in this chapter will be presented in two sections for a 

signal processing and the verification of results. 

PC 
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Acquisition  
System (DAQ) 

Slab top view 
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Column 

300 100 
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7.4.1  Signal processing data analysis 

In this experiment the sweep sinusoidal signal wave was generated by the 

actuator. The sweep sinusoidal signal started from 500 Hz and ended at 150 KHz, 

with a magnitude of 10V. The sweep period was set as 1 second and the recording 

period as 4 seconds; this means that at least three complete sweep periods were 

recorded in each measurement.  

The received signal was saved every second for future processing and 

analysis. During the loading procedure, noises were found in the time-domain 

signals, and the signals were transformed to the frequency-domain to avoid noises 

which mostly happened in very low frequencies. For this purpose, a Fourier 

transform was applied to the recorded time-domain signal using LabVIEW software 

and the results were exported for further analysis to a MATLAB program, in the 

format of PSD (frequency-domain). All PSDs were calculated using four periods of 

swept sine-wave in order to obtain a better accuracy. Figure 7-7 depicts the received 

frequency-domain signals from sensor 1 every 30 minutes after loading commenced. 

Each plot corresponds to only one cycle of the detected signals, in the level of 

millivolts, from the repeated swept sine waves. 
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Figure 7-7: Power spectral density (PSD) for sensor 1 measured every 30 minutes 
after loading commenced 

The test results in Figure 7-7 shows the difference between the signals before and 

after cracking. After the RC slab cracked, the peak of PSD dramatically drops with 

the increasing load. For example, the peak of PSD value after 30 minutes is close to 

2.8 V2/Hz, while after 60 minutes it is close to 0.4 V2/Hz. This dramatic drop can be 

correlated to the cracks occurring on the RC beam, however they are not visible. The 

peak of PSD then slightly increases to 1.25 V2/Hz, but after a few minutes, it drops 
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again to 0.84 V2/Hz. This variation is related to the RC slab behaviour under cyclic 

loading; the first cracking on the slab surface occurred when the slab was under 

tension, but by changing the loading cycle, the slab experienced compression, which 

prevented further development of cracks. In the next cycle of loading depth, cracks 

increased due to tension. Figure 7-8 shows the area of cracking under tension on top 

of an RC slab, but with the change of the loading cycle the crack almost disappears 

on the surface of the slab due to compression. The drop in the value of the peak of 

PSD means that the wave is not able to be propagated due to cracking. 

Similar to the RC beam results in Chapter 6, waves of low frequencies 

attenuate much less than those of high frequencies. In the frequency-domain 

response of sensors during the test, the magnitude variation was always within the 80 

kHz to 120 kHz range. Similar observations can be made from the RC beams results 

in Chapter 6. From these observations, a sweep sine wave signal is attenuated in the 

frequency range of 80 kHz to 120 kHz for concrete materials. 

Shortly following a dramatic drop in the peak of PSD, cracks become visible 

on the surface of RC slab. Overall, the raw frequency-domain data offers useful 

information regarding the damaged or healthy status of the RC slab and can be used 

for early assessment of RC slabs.  
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Figure 7-8: Cracking area when the RC slab is under (a) tension and (b) compression 

For further comparison of the results, the value of peak of PSD and total received 

power for each record has been calculated using the MATLAB code presented in 

Appendix A. Figure 7-9 and Figure 7-10 show the peak of PSD and total received 

power, received by sensor 1 and sensor 2 at the surface of RC slab under cyclic 

loading. 

After 60 Minutes After 90 Minutes 

Cracking area Cracking area 

(a) (b) 
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(a) 

 

(b) 

Figure 7-9: Peak of PSD vs time for (a) sensor 1 and (b) sensor 2 
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(a) 

 

(b) 

Figure 7-10: Total received power vs time for (a) sensor 1 and (b) sensor 2 
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These figures present the changes before and after cracking occurs. For example, for 

the sensor 2 peak of PSD value at the certain time from 2.82 V2/Hz dramatically 

drops to 0.29 V2/Hz, which can be correlated to the occurrence of a crack in the RC 

slab. This means that the wave propagation was almost blocked. This dramatic drop 

in the value of the peak of PSD and the total received power was observed in both 

sensors mounted to the RC slab specimens. Due to the loading cycle changing from 

tension to compression on top of the specimen, the signal values were slightly 

increased then dropped again due to increasing depths of the cracks.  

7.4.1  Verification of signal processing data 

Moment-rotation (M-θ) relations are widely used to illustrate the performance 

of joints. In this study, the applied moment (M) is calculated as the load P applied to 

the beam times the beam span (M = P × L), where L is the distance from the loading 

point to the column centre, taken as 1500 mm. The rotation of the joint (θ) was 

calculated as the rotation of the slab (θb) minus the rotation of the column (θc). Two 

vertical differential transducers (VDT1 and VDT2) were used to measure the θb, 

where θb = (Δ1-Δ2)/ 2L, and Δ1 and Δ2 are the vertical displacements measured by 

VDT 1 and VDT 2, respectively. Two horizontal differential transducers (HDT1 and 

HDT2) were used to monitor the θc, where θc= (Δ3-Δ4)/Ls, and Δ3 and Δ4 are the 

horizontal displacements measured by HDT1 and HDT2, respectively. Ls is the 

distance between HDT1 and HDT2. The locations of the vertical and horizontal 

transducers are illustrated in Figure 7-11. Owing to the symmetry of the interior 

joints, hysteretic curves obtained from both sides of a specimen are almost identical, 

and hysteretic curves from one side are shown in Figure 7-12. In this figure, the 

marked points on the curves respectively denotes the crack initiation (Point 1), the 
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yield point (Point 2), the maximum strength (Point 3), the local buckling of the web 

(Point 4) and the beam flange fracture (Point 5). It should be noted that the positive 

and negative moments in Figure 7-12 indicate the measurements under sagging and 

hogging conditions, respectively. 

 

Figure 7-11: Setup of instrumentation LVDTs, LPs and inclinometers (units: mm) 

(Li et al., 2017). 

 

Figure 7-12: M-θ Hysteretic curves of specimen (Li et al., 2017) 
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As the Figure 7-12 shows, the joint’s maximum strength was at point 3 in which 

specimen enters to large rotation. The first flexural crack developed on the slab’s 

surface, close to the column, and grew with increasing cyclic loading. The progress 

of the test was as follows: initial elastic deformation, slab cracking, bottom beam 

flange and web yielding, beam local buckling in the RBS region, and concrete 

crushing in the slab and steel fracture of the beam bottom flange.  

For a further verification, the demountable mechanical strain gauge results 

were also implemented. The demountable mechanical strain gauge regularly 

recorded displacements in the located position (Figure 7-6), and the results are 

illustrated in Figure 7-13. In Figure 7-13 the displacements are correlated to the 

cracking on an RC slab surface. A negative displacement means the slab is under 

tension and a positive displacement means the slab is under compression. Therefore 

the Sine diagram of the displacement and the cyclic loading are almost synchronized. 

Figure 7-13 shows a relatively large displacement at 57 minutes when the specimen 

was in tension and the cracking became visible. Interestingly, the results of the peak 

of PSD and the total received power by SAs in Figure 7-9 and Figure 7-10 showed a 

dramatic drop at the same time. This means that the mounted SAs were detected the 

crack at the same time when the demountable mechanical strain gauge detected. 



  

 
 208   

 

 

Figure 7-13: Displacement monitoring results using demountable mechanical strain 

gauge 

7.5 Summary 

This chapter presented the application of the proposed mounted SA based 

approach for health monitoring of the RC slab as a part of composite member with a 

composite joint and a reduced beam section. Three SA transducers as one actuator 

and two sensors were implemented on the RC slab to cover the expected damage 

zone. Two vertical and horizontal differential transducers were also used to monitor 

the development of cracks on the slab. The variations in the cracking behaviour of 

the RC slab were successfully monitored by both types of sensors. The proposed SA-

based method showed the ability to detect the crack before it became visible on the 

surface of the RC slab. The proposed SA-based method predicted the failure moment 

earlier than the onset of the failure of the RC slab. Based on the experimental results, 

the following conclusions can be made: 

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0:00 0:28 0:57 1:26 1:55 2:24 2:52 3:21 3:50

Time

D
is

pl
ac

em
en

t (
m

m
)



  

 
 209   

 

1. The composite member under investigation in this chapter was more complex 

than ones in Chapters 5 and 6 of this thesis. It included a concrete-filled 

tubular steel tube, a reduced beam section, a RC slab and connectors. In 

addition, it was under relatively complex cyclic loading; therefore, the RC 

slab had no separated tension and compression sides.  

2. The proposed mounted SA based approach could be successfully applied for 

the health monitoring of RC slab in this composite member under cyclic 

loading. It was shown that the energy of the received power dramatically 

decreased when cracking occurred and then slightly increased due to 

compression force (i.e., decreasing crack width) when the direction of loading 

changes. 

3. There was a good correlation between the results obtained with two SA 

sensors located at different distances from the SA actuator.  

4. Overall, the results show that the proposed mounted SA based approach 

could be successfully applied for the detection and monitoring cracking in of 

RC slab of composite members. 
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Chapter 8 : Conclusion and Future Work 

 

8.1 Conclusion 

Piezoceramic-based transducers have been used in a wide range of non-

destructive testing systems due to the advantages of low cost, quick response, light 

weight, and solid-state actuation. In this thesis SA based approaches were developed 

and applied for characterisation of concrete members at different stages of their life. 

They used stress wave propagation characteristics, appropriate arrangement of SAs 

in and on concrete members, and analysis of the received signal using the power 

spectral density, total received power and damage indexes. These techniques were 

applied for monitoring of early-age concrete, and detection and monitoring of 

cracking in concrete members of different complicity under bending or cyclic 

loading. 

The most significant findings of this research are the following: 

1. The received signals in time-domain and frequency-domain may not provide 

sufficient information about a status of concrete member with respect to quality 

of concrete and/or integrity of the member. Therefore, power spectral density 

(PSD), total received power and damage indexes were presented as useful data 

analysis tool for health monitoring of concrete members. 

2. The embedded SA based approach provided monitoring of a very early-age 

concrete hydration process monitoring. The peak of PSD and total received 

power increased with the development of hydration process. The received signal 
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gradually decreased when the separation distance between SA actuator and 

sensor increased.  

3. The proposed embedded SA based approach can be used for the determination of 

initial w/c ratio and compressive strength of concrete at its early-age stage. 

4. The investigation of SAs embedded in water showed that the received signal was 

measurable and its amplitude could be controlled by changing amount of water in 

moulds.  In general, the preliminary measurement in water can be used for 

selection and calibration of SAs before concrete casting.  

5. The proposed mounted SA based approach has demonstrated ability to detect 

cracks in concrete members. In this case location of SA transducers on the 

surface of concrete members can be changed and optimized. This approach is 

very suitable for detection and monitoring of cracks in concrete and reinforced 

concrete members under loading. 

6. It was shown that the proposed method had an ability not only to detect the 

surface crack but also to detect the internal crack before it became visible. It was 

more sensitive to cracking than a conventional load cell and strain gauge. Due to 

its sensitivity, the proposed method could predict the beam failure earlier than 

load cells or strain gauges.  

7. It was shown that the proposed mounted SA based sensory system could capture 

a precautionary signal for major cracking in large-scale reinforced concrete 

beams. The experimental results for peak of PSD and total received power 

showed that the transmission energy between the SA actuator and SA sensors in 

the RC beams dropped dramatically after the cracking moment. The proposed 

mounted SA sensory system is more sensitive to the cracking moment than the 

load cell and strain gauges.  
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8. The proposed mounted SA based approach has demonstrated capability of NDT 

of a relatively complex composite member such is one consisted of a concrete-

filled tubular steel tube, a reduced beam section, a RC slab and connectors under 

relatively complex cyclic loading. It was shown that the energy of the received 

power dramatically decreased when cracking occurred and then slightly increased 

due to compression force (i.e., decreasing crack width) when the direction of 

loading changes. It means the stages of crack opening and closing during the 

cycle can be detected that may increase probability of crack detection and 

monitoring. 

8.2 Future work 

This study focused on application of SAs for concrete material characterisation and 

detection and evaluation of cracks on concrete structures. However, much research is 

still needed to be done in order to deliver this system to the industry. Future study 

suggestions are as following: 

1. Concrete properties are diverse in the sense of material. In order to design 

multifunctional sensing system for determination of w/c ration and compressive 

strength of different types of concrete more concrete specimens with different 

compositions should be tested.  

2. Future research should focus on very early-age concrete characterization for the 

prediction of the concrete strength development data at first 24 hours.  

3. NDT of RC members should be extended to experiments with these members 

under dynamic load.  

4. The optimization of the installation and location of the mounted SAs should be 

studied for more accurate localisation of defects. 
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5. Artificial intelligence techniques should be developed and applied for the 

received signal to enhance the developed SA based approaches for NDT of 

concrete based members. This work is in progress (please see [3] in 1.3 

Publications). 
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Appendix A  

The MATLAB code developed to calculate the peak of PSD and total 

received power 

X1(1:160000,:)=[]; 
X1(600000:end,:)=[]; 
  
X1(:,2)=X1(:,2).*1e9; 
figure(1) 
plot(X1(:,1),X1(:,2)); 
grid on 
AreaX1=trapz(X1(:,1),X1(:,2)); 
AreaX1=AreaX1/1000; 
maxX1=max(X1(:,2)); 
[maxYValue, indexAtMaxY] = max(X1(:,2)); 
    Y1=X1(indexAtMaxY,1) %frequency 
  
X2(1:160000,:)=[]; 
X2(600000:end,:)=[]; 
  
X2(:,2)=X2(:,2).*1e9; 
figure(2) 
plot(X2(:,1),X2(:,2)); 
grid on 
AreaX2=trapz(X2(:,1),X2(:,2)); 
AreaX2=AreaX2/1000; 
maxX2=max(X2(:,2)); 
[maxYValue, indexAtMaxY] = max(X2(:,2)); 
    Y2=X2(indexAtMaxY,1) %frequency 
  
X3(1:160000,:)=[]; 
X3(600000:end,:)=[]; 
  
X3(:,2)=X3(:,2).*1e9; 
figure(3) 
plot(X3(:,1),X3(:,2)); 
grid on 
AreaX3=trapz(X3(:,1),X3(:,2)); 
AreaX3=AreaX3/1000; 
maxX3=max(X3(:,2)); 
[maxYValue, indexAtMaxY] = max(X3(:,2)); 
    Y3=X3(indexAtMaxY,1) %frequency 
  
X4(1:160000,:)=[]; 
X4(600000:end,:)=[]; 
  
X4(:,2)=X4(:,2).*1e9; 
figure(4) 
plot(X4(:,1),X4(:,2)); 
grid on 
AreaX4=trapz(X4(:,1),X4(:,2)); 
AreaX4=AreaX4/1000; 
maxX4=max(X4(:,2)); 
[maxYValue, indexAtMaxY] = max(X4(:,2)); 
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    Y4=X4(indexAtMaxY,1) %frequency 
  
  
X5(1:160000,:)=[]; 
X5(600000:end,:)=[]; 
  
X5(:,2)=X5(:,2).*1e9; 
figure(5) 
plot(X5(:,1),X5(:,2)); 
grid on 
AreaX5=trapz(X5(:,1),X5(:,2)); 
AreaX5=AreaX5/1000; 
maxX5=max(X5(:,2)); 
[maxYValue, indexAtMaxY] = max(X5(:,2)); 
    Y5=X5(indexAtMaxY,1) %frequency 
  
  
X6(1:160000,:)=[]; 
X6(600000:end,:)=[]; 
  
X6(:,2)=X6(:,2).*1e9; 
figure(6) 
plot(X6(:,1),X6(:,2)); 
grid on 
AreaX6=trapz(X6(:,1),X6(:,2)); 
AreaX6=AreaX6/1000; 
maxX6=max(X6(:,2)); 
[maxYValue, indexAtMaxY] = max(X6(:,2)); 
    Y6=X6(indexAtMaxY,1) %frequency 
  
  
X7(1:160000,:)=[]; 
X7(600000:end,:)=[]; 
  
X7(:,2)=X7(:,2).*1e9; 
figure(7) 
plot(X7(:,1),X7(:,2)); 
grid on 
AreaX7=trapz(X7(:,1),X7(:,2)); 
AreaX7=AreaX7/1000; 
maxX7=max(X7(:,2)); 
[maxYValue, indexAtMaxY] = max(X7(:,2)); 
    Y7=X7(indexAtMaxY,1) %frequency 
  
  
X8(1:160000,:)=[]; 
X8(600000:end,:)=[]; 
  
X8(:,2)=X8(:,2).*1e9; 
figure(8) 
plot(X8(:,1),X8(:,2)); 
grid on 
AreaX8=trapz(X8(:,1),X8(:,2)); 
AreaX8=AreaX8/1000; 
maxX8=max(X8(:,2)); 
[maxYValue, indexAtMaxY] = max(X8(:,2)); 
    Y8=X8(indexAtMaxY,1) %frequency 
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X9(1:160000,:)=[]; 
X9(600000:end,:)=[]; 
  
X9(:,2)=X9(:,2).*1e9; 
figure(9) 
plot(X9(:,1),X9(:,2)); 
grid on 
AreaX9=trapz(X9(:,1),X9(:,2)); 
AreaX9=AreaX9/1000; 
maxX9=max(X9(:,2)); 
[maxYValue, indexAtMaxY] = max(X9(:,2)); 
    Y9=X9(indexAtMaxY,1) %frequency 
  
  
X10(1:160000,:)=[]; 
X10(600000:end,:)=[]; 
  
X10(:,2)=X10(:,2).*1e9; 
figure(10) 
plot(X10(:,1),X10(:,2)); 
grid on 
AreaX10=trapz(X10(:,1),X10(:,2)); 
AreaX10=AreaX10/1000; 
maxX10=max(X10(:,2)); 
[maxYValue, indexAtMaxY] = max(X10(:,2)); 
    Y10=X10(indexAtMaxY,1) %frequency 
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Appendix B 

The peak of PSD and the total received power for concrete beam 

specimens 

 

a) ST sensor 

 
b) SC sensor 

Figure B 1: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at the 
compression side of concrete beam SB19 
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a) ST sensor 

 

b) SC sensor 

Figure B 2: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB19 
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a) ST sensor 

 

b) SC sensor 

Figure B 3: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at the 
compression side of concrete beam SB14 
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a) ST sensor 

 

b) SC sensor 

Figure B 4: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB14 

 

 

 

1980

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000

Time  (Sec)

To
ta

lr
ec

ie
ve

d 
po

w
er

 (d
Bm

)

1980

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000

Time  (Sec)

To
ta

lr
ec

ie
ve

d 
po

w
er

 (d
Bm

)



  

 
 230   

 

 

 

a) ST sensor 

 

b) SC sensor 

Figure B 5: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at the 
compression side of concrete beam SB05 

 

 

3060

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time  (Sec)

Pe
ak

of
 P

SD
 (V

2 /
H

z)

3120

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time  (Sec)

Pe
ak

of
 P

SD
 (V

2 /
H

z)



  

 
 231   

 

 

 

a) ST sensor 

 

b) SC sensor 

Figure B 6: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB05 
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a) ST sensor 

 

b) SC sensor 

Figure B 7: Peak of PSD for (a) ST sensor at the tension side and (b) SC sensor at the 
compression side of concrete beam SB15 
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a) ST sensor 

 

b) SC sensor 

Figure B 8: Total received power for (a) ST sensor at the tension side and (b) SC 
sensor at the compression side of concrete beam SB15 
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